Abstract

A silicon modulator with microring array assisted MZI is experimentally demonstrated on silicon-on-insulator wafer through CMOS-compatible process. The footprint of the whole modulator is about 600 μm2. With forward-biased current-driven p-n junction, the 3-dB modulation bandwidth is ~2GHz. Furthermore, the impact of ambient temperature is minified with the help of MZI. Within temperature range of 10 – 70 °C, the maximum divergence of modulation curve is less than ~3 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  2. D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
    [CrossRef]
  3. Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  4. L. Chen, K. Preston, S. Manipatruni, M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009).
    [CrossRef] [PubMed]
  5. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19(22), 21989–22003 (2011).
    [CrossRef] [PubMed]
  6. D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
    [CrossRef]
  7. P. Dong, L. Chen, Y. K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
    [CrossRef] [PubMed]
  8. T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
    [CrossRef]
  9. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011).
    [CrossRef] [PubMed]
  10. A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J. M. Fédéli, L. Vivien, J. Marti, P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30(1), 9–14 (2012).
    [CrossRef]
  11. X. J. Zhang, X. Feng, D. K. Zhang, Y. D. Huang, “Compact temperature-insensitive modulator based on a silicon microring assistant Mach Zehnder interferometer,” Chin. Phys. B 21, 124203 (2012).
  12. F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
    [CrossRef] [PubMed]
  13. S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, T. Yamamoto, “1-Vpp 10-Gb/s operation of slow-light silicon Mach-Zehnder modulator in wavelength range of 1 nm,” in IEEE International Conference on Group IV Photonics, (Beijing, China, 2010), pp. 45–47.
    [CrossRef]
  14. Y. Li, L. Zhang, M. Song, B. Zhang, J. Y. Yang, R. G. Beausoleil, A. E. Willner, P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express 16(17), 13342–13348 (2008).
    [CrossRef] [PubMed]
  15. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33(17), 1978–1980 (2008).
    [CrossRef] [PubMed]
  16. Q. Xu, “Silicon dual-ring modulator,” Opt. Express 17(23), 20783–20793 (2009).
    [CrossRef] [PubMed]
  17. Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012).
    [CrossRef] [PubMed]
  18. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
    [CrossRef]
  19. L. Zhang, Y. C. Li, J. Y. Yang, M. P. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
    [CrossRef]

2012 (5)

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

X. J. Zhang, X. Feng, D. K. Zhang, Y. D. Huang, “Compact temperature-insensitive modulator based on a silicon microring assistant Mach Zehnder interferometer,” Chin. Phys. B 21, 124203 (2012).

A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J. M. Fédéli, L. Vivien, J. Marti, P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30(1), 9–14 (2012).
[CrossRef]

P. Dong, L. Chen, Y. K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
[CrossRef] [PubMed]

Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (3)

L. Zhang, Y. C. Li, J. Y. Yang, M. P. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[CrossRef]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

2009 (3)

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

L. Chen, K. Preston, S. Manipatruni, M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009).
[CrossRef] [PubMed]

Q. Xu, “Silicon dual-ring modulator,” Opt. Express 17(23), 20783–20793 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

2004 (1)

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Akiyama, S.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, T. Yamamoto, “1-Vpp 10-Gb/s operation of slow-light silicon Mach-Zehnder modulator in wavelength range of 1 nm,” in IEEE International Conference on Group IV Photonics, (Beijing, China, 2010), pp. 45–47.
[CrossRef]

Alic, N.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Ang, K. W.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Arita, Y.

Baba, T.

Beausoleil, R. G.

Boyd, R. W.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Brimont, A.

Cassan, E.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Chen, L.

Chen, Y. K.

Chu, T.

Crozat, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Dapkus, P. D.

Dong, P.

Fang, Q.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Fedeli, J. M.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Fedeli, J.-M.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Fédéli, J. M.

Feng, X.

X. J. Zhang, X. Feng, D. K. Zhang, Y. D. Huang, “Compact temperature-insensitive modulator based on a silicon microring assistant Mach Zehnder interferometer,” Chin. Phys. B 21, 124203 (2012).

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Gutierrez, A. M.

Halbwax, M.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Hatori, N.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, T. Yamamoto, “1-Vpp 10-Gb/s operation of slow-light silicon Mach-Zehnder modulator in wavelength range of 1 nm,” in IEEE International Conference on Group IV Photonics, (Beijing, China, 2010), pp. 45–47.
[CrossRef]

Heebner, J. E.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Hu, Y.

Hu, Y. F.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Huang, Y. D.

X. J. Zhang, X. Feng, D. K. Zhang, Y. D. Huang, “Compact temperature-insensitive modulator based on a silicon microring assistant Mach Zehnder interferometer,” Chin. Phys. B 21, 124203 (2012).

Ishikura, N.

Jackson, D. J.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Kurahashi, T.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, T. Yamamoto, “1-Vpp 10-Gb/s operation of slow-light silicon Mach-Zehnder modulator in wavelength range of 1 nm,” in IEEE International Conference on Group IV Photonics, (Beijing, China, 2010), pp. 45–47.
[CrossRef]

Kwong, D. L.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Laval, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Le Roux, X.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Lentine, A. L.

Li, X.

Li, Y.

Li, Y. C.

L. Zhang, Y. C. Li, J. Y. Yang, M. P. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[CrossRef]

Li, Z.

Liow, T. Y.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Lipson, M.

Lo, G. Q.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Lupu, A.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Lyan, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Maine, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Manipatruni, S.

Marris-Morini, D.

A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J. M. Fédéli, L. Vivien, J. Marti, P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30(1), 9–14 (2012).
[CrossRef]

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Marti, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Nguyen, H. C.

Preston, K.

Radic, S.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Rasigade, G.

A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J. M. Fédéli, L. Vivien, J. Marti, P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30(1), 9–14 (2012).
[CrossRef]

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Rivallin, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Sakai, Y.

Sanchis, P.

Schmidt, B.

Schweinsberg, A.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Shakya, J.

Shinkawa, M.

Shinobu, F.

Song, J. F.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Song, M.

Song, M. P.

L. Zhang, Y. C. Li, J. Y. Yang, M. P. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[CrossRef]

Tamanuki, T.

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Trotter, D. C.

Usuki, T.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, T. Yamamoto, “1-Vpp 10-Gb/s operation of slow-light silicon Mach-Zehnder modulator in wavelength range of 1 nm,” in IEEE International Conference on Group IV Photonics, (Beijing, China, 2010), pp. 45–47.
[CrossRef]

Vivien, L.

A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J. M. Fédéli, L. Vivien, J. Marti, P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30(1), 9–14 (2012).
[CrossRef]

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Watts, M. R.

Willner, A. E.

Wong, V.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Wu, T.

Xiao, X.

Xiong, K.

Xiong, Y. Z.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Xu, H.

Xu, Q.

Xu, Q. F.

Yamamoto, T.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, T. Yamamoto, “1-Vpp 10-Gb/s operation of slow-light silicon Mach-Zehnder modulator in wavelength range of 1 nm,” in IEEE International Conference on Group IV Photonics, (Beijing, China, 2010), pp. 45–47.
[CrossRef]

Yang, J. Y.

L. Zhang, Y. C. Li, J. Y. Yang, M. P. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[CrossRef]

Y. Li, L. Zhang, M. Song, B. Zhang, J. Y. Yang, R. G. Beausoleil, A. E. Willner, P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express 16(17), 13342–13348 (2008).
[CrossRef] [PubMed]

Young, R. W.

Yu, J.

Yu, M. B.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

Yu, Y.

Zhang, B.

Zhang, D. K.

X. J. Zhang, X. Feng, D. K. Zhang, Y. D. Huang, “Compact temperature-insensitive modulator based on a silicon microring assistant Mach Zehnder interferometer,” Chin. Phys. B 21, 124203 (2012).

Zhang, L.

Zhang, X. J.

X. J. Zhang, X. Feng, D. K. Zhang, Y. D. Huang, “Compact temperature-insensitive modulator based on a silicon microring assistant Mach Zehnder interferometer,” Chin. Phys. B 21, 124203 (2012).

Ziebell, M.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Zortman, W. A.

Zou, L.

Chin. Phys. B (1)

X. J. Zhang, X. Feng, D. K. Zhang, Y. D. Huang, “Compact temperature-insensitive modulator based on a silicon microring assistant Mach Zehnder interferometer,” Chin. Phys. B 21, 124203 (2012).

IEEE J. Quantum Electron. (1)

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

L. Zhang, Y. C. Li, J. Y. Yang, M. P. Song, R. G. Beausoleil, A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[CrossRef]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Opt. Express (9)

Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

Y. Li, L. Zhang, M. Song, B. Zhang, J. Y. Yang, R. G. Beausoleil, A. E. Willner, P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express 16(17), 13342–13348 (2008).
[CrossRef] [PubMed]

P. Dong, L. Chen, Y. K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
[CrossRef] [PubMed]

Y. Hu, X. Xiao, H. Xu, X. Li, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “High-speed silicon modulator based on cascaded microring resonators,” Opt. Express 20(14), 15079–15085 (2012).
[CrossRef] [PubMed]

L. Chen, K. Preston, S. Manipatruni, M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009).
[CrossRef] [PubMed]

Q. Xu, “Silicon dual-ring modulator,” Opt. Express 17(23), 20783–20793 (2009).
[CrossRef] [PubMed]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011).
[CrossRef] [PubMed]

F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
[CrossRef] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19(22), 21989–22003 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. IEEE (1)

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97(7), 1199–1215 (2009).
[CrossRef]

Other (1)

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, T. Yamamoto, “1-Vpp 10-Gb/s operation of slow-light silicon Mach-Zehnder modulator in wavelength range of 1 nm,” in IEEE International Conference on Group IV Photonics, (Beijing, China, 2010), pp. 45–47.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The structure of microring array assisted MZI silicon modulator; (b) microscopic image of the fabricated modulator with the electrodes; (c) scanning electron microscope (SEM) images of the sample after etching and without ion implantation; (d) schematic measurement system of the modulator; (e) the I-V curve of the p-n junction.

Fig. 2
Fig. 2

(a) The transmission spectrum without (solid) and with (dashed) conglutination at 1548 – 1552nm; the transmission and phase shift spectrum without (b) and with (c) conglutination at the resonant wavelength. Here, only one microring with D = 10 μm and gap distance of 20 nm is calculated with FDTD method.

Fig. 3
Fig. 3

(a) Measured output spectra at different temperatures; transmission and Δϕ spectra of symmetrical (b) and asymmetrical (c) structure at different temperatures in wavelength range of 1540 – 1560nm; (d) enlarged transmission spectra for asymmetrical structure within the range of 1548 – 1552 nm.

Fig. 4
Fig. 4

The oscilloscope traces of the detected signals. (a) The DC bias is 0 V; (b) the DC bias is 1.1 V.

Fig. 5
Fig. 5

(a) Normalized microwave frequency response of the modulator; (b) the bandwidths under different signal powers; (c) the modulated square wave signal.

Fig. 6
Fig. 6

Modulation curves at different temperature.

Tables (1)

Tables Icon

Table 1 The diameters of each ring for calculating Fig. 3(b)

Metrics