Abstract

Optical cavity enhancement is a highly desirable process to make sensitive direct-absorption spectroscopic measurements of unknown substances, such as explosives, illicit material, or other species of interest. This paper reports advancements in the development of real-time cavity ringdown spectroscopy over a wide-bandwidth, with the aim to make headspace measurements of molecules at trace levels. We report results of two pulsed quantum cascade systems operating between (1200 to 1320)cm−1 and (1316 to 1613)cm−1 that measure the headspace of nitromethane, acetonitrile, acetone, and nitroglycerin, where the spectra are obtained in less than four seconds and contain at least 150,000 spectral wavelength datapoints.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imag. 8, 9–38 (2007).
    [CrossRef]
  2. J.S. Caygill, F. Davis, S.P.J. Higson, “Current trends in explosives detection techniques,” Talanta 88, 14–29 (2012).
    [CrossRef] [PubMed]
  3. R.G. Ewing, D.A. Atkinson, G.A. Eiceman, G.J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54(3), 515–529 (2001).
    [CrossRef]
  4. I. Gazit, J. Terkel, “Explosives detection by sniffer dogs following strenuous physical activity,” Appl. Anim. Behav. Sci. 81(2), 149–161 (2003).
    [CrossRef]
  5. T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Wilke, R.L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
    [CrossRef]
  6. T.K. Boyson, T.G. Spence, M.E. Calzada, C.C. Harb, “Frequency domain analysis for laser-locked cavity ringdown spectroscopy,” Opt. Express 19(9), 8092–8101 (2011).
    [CrossRef] [PubMed]
  7. J. Ye, L. Ma, J.L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B: Opt. Phys. 15(1), 6–15 (1998).
    [CrossRef]
  8. T.G. Spence, M.E. Calzada, H.M. Gardner, E. Leefe, H.B. Fontenot, L. Gilevicius, R.W. Hartsock, T.K. Boyson, C.C. Harb, “Real-time FPGA data collection of pulsed-laser cavity ringdown signals,” Opt. Express 20(8), 8804–8814 (2012).
    [CrossRef] [PubMed]
  9. C. Ramos, P.J. Dagdigian, “Detection of vapors of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy,” Appl. Opt. 46(4), 620–627 (2007).
    [CrossRef] [PubMed]
  10. A.D. Usachev, T.S. Miller, J.P. Singh, F. Yueh, P. Jang, D.L. Monts, “Optical properties of gaseous 2,4,6-trinitrotoluene in the ultraviolet region,” Appl. Spectrosc. 55(2), 125–129 (2001).
    [CrossRef]
  11. C. Ramos, P.J. Dagdigian, “Effect of photochemistry on molecular detection by cavity ringdown spectroscopy: case study of an explosive-related compound,” Appl. Opt. 46(26), 6526–6532 (2007).
    [CrossRef] [PubMed]
  12. M. Snels, T. Venezi, L. Belfiore, “Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy,” Chem. Phys. Lett. 489, 134–140 (2010).
    [CrossRef]
  13. M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
    [CrossRef]
  14. C.C. Harb, T.K. Boyson, A.G. Kallapur, I.R. Petersen, M.E. Calzada, T.G. Spence, K.P. Kirkbride, D.S. Moore, “Pulsed quantum cascade laser-based CRDS substance detection: real-time detection of TNT,” Opt. Express 20(14), 15489–15502 (2012).
    [CrossRef] [PubMed]
  15. M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
    [CrossRef] [PubMed]
  16. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
    [CrossRef]
  17. C.G. Tarsitano, C.R. Webster, “Multilaser Herriott cell for planetary tunable laser spectrometers,” Appl. Opt. 46(28), 6923–6935 (2007).
    [CrossRef] [PubMed]
  18. M.S. Taubman, T.L. Myers, B.E. Bernacki, R.D. Stahl, B.D. Cannon, J.T. Schiffern, M.C. Phillips, “A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach,” Proc. of SPIE 8268, 82682G (2012).
    [CrossRef]
  19. P. Zalicki, R.N. Zare, ”Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708 (1995).
    [CrossRef]
  20. J.J. Harrison, N Humpage, N.D.C. Allena, A.M. Waterfall, P.F. Bernath, J.J. Remedios, “Mid-infrared absorption cross sections for acetone (propanone),” J. Quant. Spectrosc. Radiat. Transfer 112(3), 457–464 (2011).
    [CrossRef]
  21. R.G. Smith, N. D’Souza, S. Nicklin, “A review of biosensors and biologically-inspired systems for explosives detection,” Analyst 133(5), 571–584 (2008).
    [CrossRef] [PubMed]
  22. O. Leitch, O, A. Anderson, K.P. Kirkbride, C. Lennard, “Biological organisms as volatile compound detectors: A review,” Forensic Sci. Int. 232(1–3), 92–103 (2013).
    [CrossRef] [PubMed]

2013

O. Leitch, O, A. Anderson, K.P. Kirkbride, C. Lennard, “Biological organisms as volatile compound detectors: A review,” Forensic Sci. Int. 232(1–3), 92–103 (2013).
[CrossRef] [PubMed]

2012

M.S. Taubman, T.L. Myers, B.E. Bernacki, R.D. Stahl, B.D. Cannon, J.T. Schiffern, M.C. Phillips, “A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach,” Proc. of SPIE 8268, 82682G (2012).
[CrossRef]

J.S. Caygill, F. Davis, S.P.J. Higson, “Current trends in explosives detection techniques,” Talanta 88, 14–29 (2012).
[CrossRef] [PubMed]

T.G. Spence, M.E. Calzada, H.M. Gardner, E. Leefe, H.B. Fontenot, L. Gilevicius, R.W. Hartsock, T.K. Boyson, C.C. Harb, “Real-time FPGA data collection of pulsed-laser cavity ringdown signals,” Opt. Express 20(8), 8804–8814 (2012).
[CrossRef] [PubMed]

C.C. Harb, T.K. Boyson, A.G. Kallapur, I.R. Petersen, M.E. Calzada, T.G. Spence, K.P. Kirkbride, D.S. Moore, “Pulsed quantum cascade laser-based CRDS substance detection: real-time detection of TNT,” Opt. Express 20(14), 15489–15502 (2012).
[CrossRef] [PubMed]

2011

T.K. Boyson, T.G. Spence, M.E. Calzada, C.C. Harb, “Frequency domain analysis for laser-locked cavity ringdown spectroscopy,” Opt. Express 19(9), 8092–8101 (2011).
[CrossRef] [PubMed]

J.J. Harrison, N Humpage, N.D.C. Allena, A.M. Waterfall, P.F. Bernath, J.J. Remedios, “Mid-infrared absorption cross sections for acetone (propanone),” J. Quant. Spectrosc. Radiat. Transfer 112(3), 457–464 (2011).
[CrossRef]

2010

M. Snels, T. Venezi, L. Belfiore, “Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy,” Chem. Phys. Lett. 489, 134–140 (2010).
[CrossRef]

2009

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

2008

R.G. Smith, N. D’Souza, S. Nicklin, “A review of biosensors and biologically-inspired systems for explosives detection,” Analyst 133(5), 571–584 (2008).
[CrossRef] [PubMed]

2007

2006

M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

2003

I. Gazit, J. Terkel, “Explosives detection by sniffer dogs following strenuous physical activity,” Appl. Anim. Behav. Sci. 81(2), 149–161 (2003).
[CrossRef]

2002

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

2001

R.G. Ewing, D.A. Atkinson, G.A. Eiceman, G.J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54(3), 515–529 (2001).
[CrossRef]

A.D. Usachev, T.S. Miller, J.P. Singh, F. Yueh, P. Jang, D.L. Monts, “Optical properties of gaseous 2,4,6-trinitrotoluene in the ultraviolet region,” Appl. Spectrosc. 55(2), 125–129 (2001).
[CrossRef]

2000

T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Wilke, R.L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

1998

J. Ye, L. Ma, J.L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B: Opt. Phys. 15(1), 6–15 (1998).
[CrossRef]

1995

P. Zalicki, R.N. Zare, ”Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708 (1995).
[CrossRef]

Allena, N.D.C.

J.J. Harrison, N Humpage, N.D.C. Allena, A.M. Waterfall, P.F. Bernath, J.J. Remedios, “Mid-infrared absorption cross sections for acetone (propanone),” J. Quant. Spectrosc. Radiat. Transfer 112(3), 457–464 (2011).
[CrossRef]

Anderson, A.

O. Leitch, O, A. Anderson, K.P. Kirkbride, C. Lennard, “Biological organisms as volatile compound detectors: A review,” Forensic Sci. Int. 232(1–3), 92–103 (2013).
[CrossRef] [PubMed]

Arnold, J.T.

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Atkinson, D.A.

R.G. Ewing, D.A. Atkinson, G.A. Eiceman, G.J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54(3), 515–529 (2001).
[CrossRef]

Belfiore, L.

M. Snels, T. Venezi, L. Belfiore, “Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy,” Chem. Phys. Lett. 489, 134–140 (2010).
[CrossRef]

Bernacki, B.E.

M.S. Taubman, T.L. Myers, B.E. Bernacki, R.D. Stahl, B.D. Cannon, J.T. Schiffern, M.C. Phillips, “A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach,” Proc. of SPIE 8268, 82682G (2012).
[CrossRef]

Bernath, P.F.

J.J. Harrison, N Humpage, N.D.C. Allena, A.M. Waterfall, P.F. Bernath, J.J. Remedios, “Mid-infrared absorption cross sections for acetone (propanone),” J. Quant. Spectrosc. Radiat. Transfer 112(3), 457–464 (2011).
[CrossRef]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

Boyson, T.K.

Byer, R.L.

T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Wilke, R.L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

Calzada, M.E.

Cannon, B.D.

M.S. Taubman, T.L. Myers, B.E. Bernacki, R.D. Stahl, B.D. Cannon, J.T. Schiffern, M.C. Phillips, “A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach,” Proc. of SPIE 8268, 82682G (2012).
[CrossRef]

Caygill, J.S.

J.S. Caygill, F. Davis, S.P.J. Higson, “Current trends in explosives detection techniques,” Talanta 88, 14–29 (2012).
[CrossRef] [PubMed]

Coy, S.L.

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

D’Souza, N.

R.G. Smith, N. D’Souza, S. Nicklin, “A review of biosensors and biologically-inspired systems for explosives detection,” Analyst 133(5), 571–584 (2008).
[CrossRef] [PubMed]

Dagdigian, P.J.

Davis, F.

J.S. Caygill, F. Davis, S.P.J. Higson, “Current trends in explosives detection techniques,” Talanta 88, 14–29 (2012).
[CrossRef] [PubMed]

Eiceman, G.A.

R.G. Ewing, D.A. Atkinson, G.A. Eiceman, G.J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54(3), 515–529 (2001).
[CrossRef]

Ewing, G.J.

R.G. Ewing, D.A. Atkinson, G.A. Eiceman, G.J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54(3), 515–529 (2001).
[CrossRef]

Ewing, R.G.

R.G. Ewing, D.A. Atkinson, G.A. Eiceman, G.J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54(3), 515–529 (2001).
[CrossRef]

Fontenot, H.B.

Gardner, H.M.

Gazit, I.

I. Gazit, J. Terkel, “Explosives detection by sniffer dogs following strenuous physical activity,” Appl. Anim. Behav. Sci. 81(2), 149–161 (2003).
[CrossRef]

Gilevicius, L.

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

Haensch, T.W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

Hall, J.L.

J. Ye, L. Ma, J.L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B: Opt. Phys. 15(1), 6–15 (1998).
[CrossRef]

Harb, C.C.

Harrison, J.J.

J.J. Harrison, N Humpage, N.D.C. Allena, A.M. Waterfall, P.F. Bernath, J.J. Remedios, “Mid-infrared absorption cross sections for acetone (propanone),” J. Quant. Spectrosc. Radiat. Transfer 112(3), 457–464 (2011).
[CrossRef]

Hartsock, R.W.

Higson, S.P.J.

J.S. Caygill, F. Davis, S.P.J. Higson, “Current trends in explosives detection techniques,” Talanta 88, 14–29 (2012).
[CrossRef] [PubMed]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

Humpage, N

J.J. Harrison, N Humpage, N.D.C. Allena, A.M. Waterfall, P.F. Bernath, J.J. Remedios, “Mid-infrared absorption cross sections for acetone (propanone),” J. Quant. Spectrosc. Radiat. Transfer 112(3), 457–464 (2011).
[CrossRef]

Hunter, M.

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

Jang, P.

Jones, R.J.

M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Kachanov, A.

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Kallapur, A.G.

Kirkbride, K.P.

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

Leefe, E.

Leitch, O.

O. Leitch, O, A. Anderson, K.P. Kirkbride, C. Lennard, “Biological organisms as volatile compound detectors: A review,” Forensic Sci. Int. 232(1–3), 92–103 (2013).
[CrossRef] [PubMed]

Lennard, C.

O. Leitch, O, A. Anderson, K.P. Kirkbride, C. Lennard, “Biological organisms as volatile compound detectors: A review,” Forensic Sci. Int. 232(1–3), 92–103 (2013).
[CrossRef] [PubMed]

Ma, L.

J. Ye, L. Ma, J.L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B: Opt. Phys. 15(1), 6–15 (1998).
[CrossRef]

Miller, T.S.

Moll, K.D.

M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Monts, D.L.

Moore, D.S.

Myers, T.L.

M.S. Taubman, T.L. Myers, B.E. Bernacki, R.D. Stahl, B.D. Cannon, J.T. Schiffern, M.C. Phillips, “A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach,” Proc. of SPIE 8268, 82682G (2012).
[CrossRef]

Nicklin, S.

R.G. Smith, N. D’Souza, S. Nicklin, “A review of biosensors and biologically-inspired systems for explosives detection,” Analyst 133(5), 571–584 (2008).
[CrossRef] [PubMed]

O,

O. Leitch, O, A. Anderson, K.P. Kirkbride, C. Lennard, “Biological organisms as volatile compound detectors: A review,” Forensic Sci. Int. 232(1–3), 92–103 (2013).
[CrossRef] [PubMed]

Owano, T.G.

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

Paldus, B.A.

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Wilke, R.L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

Petersen, I.R.

Phillips, M.C.

M.S. Taubman, T.L. Myers, B.E. Bernacki, R.D. Stahl, B.D. Cannon, J.T. Schiffern, M.C. Phillips, “A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach,” Proc. of SPIE 8268, 82682G (2012).
[CrossRef]

Picque, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

Provencal, R.A.

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Ramos, C.

Remedios, J.J.

J.J. Harrison, N Humpage, N.D.C. Allena, A.M. Waterfall, P.F. Bernath, J.J. Remedios, “Mid-infrared absorption cross sections for acetone (propanone),” J. Quant. Spectrosc. Radiat. Transfer 112(3), 457–464 (2011).
[CrossRef]

Safdi, B.

M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Schiffern, J.T.

M.S. Taubman, T.L. Myers, B.E. Bernacki, R.D. Stahl, B.D. Cannon, J.T. Schiffern, M.C. Phillips, “A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach,” Proc. of SPIE 8268, 82682G (2012).
[CrossRef]

Singh, J.P.

Smith, R.G.

R.G. Smith, N. D’Souza, S. Nicklin, “A review of biosensors and biologically-inspired systems for explosives detection,” Analyst 133(5), 571–584 (2008).
[CrossRef] [PubMed]

Snels, M.

M. Snels, T. Venezi, L. Belfiore, “Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy,” Chem. Phys. Lett. 489, 134–140 (2010).
[CrossRef]

Spence, T.G.

Stahl, R.D.

M.S. Taubman, T.L. Myers, B.E. Bernacki, R.D. Stahl, B.D. Cannon, J.T. Schiffern, M.C. Phillips, “A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach,” Proc. of SPIE 8268, 82682G (2012).
[CrossRef]

Steinfeld, J.I.

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Tarsitano, C.G.

Taubman, M.S.

M.S. Taubman, T.L. Myers, B.E. Bernacki, R.D. Stahl, B.D. Cannon, J.T. Schiffern, M.C. Phillips, “A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach,” Proc. of SPIE 8268, 82682G (2012).
[CrossRef]

Terkel, J.

I. Gazit, J. Terkel, “Explosives detection by sniffer dogs following strenuous physical activity,” Appl. Anim. Behav. Sci. 81(2), 149–161 (2003).
[CrossRef]

Thorpe, M.J.

M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Todd, M.W.

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

Usachev, A.D.

Venezi, T.

M. Snels, T. Venezi, L. Belfiore, “Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy,” Chem. Phys. Lett. 489, 134–140 (2010).
[CrossRef]

Vodopyanov, K.L.

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Waterfall, A.M.

J.J. Harrison, N Humpage, N.D.C. Allena, A.M. Waterfall, P.F. Bernath, J.J. Remedios, “Mid-infrared absorption cross sections for acetone (propanone),” J. Quant. Spectrosc. Radiat. Transfer 112(3), 457–464 (2011).
[CrossRef]

Webster, C.R.

Wilke, B.

T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Wilke, R.L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

Ye, J.

M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

J. Ye, L. Ma, J.L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B: Opt. Phys. 15(1), 6–15 (1998).
[CrossRef]

Yueh, F.

Zalicki, P.

P. Zalicki, R.N. Zare, ”Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708 (1995).
[CrossRef]

Zare, R.N.

T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Wilke, R.L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

P. Zalicki, R.N. Zare, ”Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708 (1995).
[CrossRef]

Analyst

R.G. Smith, N. D’Souza, S. Nicklin, “A review of biosensors and biologically-inspired systems for explosives detection,” Analyst 133(5), 571–584 (2008).
[CrossRef] [PubMed]

Appl. Anim. Behav. Sci.

I. Gazit, J. Terkel, “Explosives detection by sniffer dogs following strenuous physical activity,” Appl. Anim. Behav. Sci. 81(2), 149–161 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M.W. Todd, R.A. Provencal, T.G. Owano, B.A. Paldus, A. Kachanov, K.L. Vodopyanov, M. Hunter, S.L. Coy, J.I. Steinfeld, J.T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapour detection using a broadly tunable optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Appl. Spectrosc.

Chem. Phys. Lett.

M. Snels, T. Venezi, L. Belfiore, “Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy,” Chem. Phys. Lett. 489, 134–140 (2010).
[CrossRef]

Forensic Sci. Int.

O. Leitch, O, A. Anderson, K.P. Kirkbride, C. Lennard, “Biological organisms as volatile compound detectors: A review,” Forensic Sci. Int. 232(1–3), 92–103 (2013).
[CrossRef] [PubMed]

J. Chem. Phys.

P. Zalicki, R.N. Zare, ”Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708 (1995).
[CrossRef]

J. Opt. Soc. Am. B: Opt. Phys.

J. Ye, L. Ma, J.L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B: Opt. Phys. 15(1), 6–15 (1998).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

J.J. Harrison, N Humpage, N.D.C. Allena, A.M. Waterfall, P.F. Bernath, J.J. Remedios, “Mid-infrared absorption cross sections for acetone (propanone),” J. Quant. Spectrosc. Radiat. Transfer 112(3), 457–464 (2011).
[CrossRef]

Nat. Photonics

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Haensch, N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2009).
[CrossRef]

Opt. Express

Proc. of SPIE

M.S. Taubman, T.L. Myers, B.E. Bernacki, R.D. Stahl, B.D. Cannon, J.T. Schiffern, M.C. Phillips, “A modular architecture for multi-channel external cavity quantum cascade laser-based chemical sensors: a systems approach,” Proc. of SPIE 8268, 82682G (2012).
[CrossRef]

Rev. Sci. Instrum.

T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Wilke, R.L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000).
[CrossRef]

Science

M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Sens. Imag.

D.S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imag. 8, 9–38 (2007).
[CrossRef]

Talanta

J.S. Caygill, F. Davis, S.P.J. Higson, “Current trends in explosives detection techniques,” Talanta 88, 14–29 (2012).
[CrossRef] [PubMed]

R.G. Ewing, D.A. Atkinson, G.A. Eiceman, G.J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54(3), 515–529 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the real-time CRDS experiment. LASER: external cavity MIR QCL; MMO: mode matching optics; PD: liquid nitrogen cooled MCT photodetector; LOCK IN: 2 lock-in amplifiers. Optical paths are shown in red; electrical in dashed black.

Fig. 2
Fig. 2

Transmission spectrum the QCL signal as it travels over 1m of room air. Shown are the fundamental and second harmonic signals after 1m of travel compared to the derived τ from the ratio of the two powers. There is a slight time offset between the two lock-in amplifiers, resulting in the large spikes seen in the lower figure. We have corrected this problem by using a single lock-in amplifier and improving the laser’s coupling to the cavity, as discussed later in the paper.

Fig. 3
Fig. 3

Polynomial fit to background, and residuals. As noted in Fig. 2, the spikes in the background signal are caused by a time offset between the two lock-in amplifiers.

Fig. 4
Fig. 4

A sensitivity analysis, demonstrating the detection limit as a function of approximate SNR. The SNR was determined at the peak of the acetone absorbance (≈ 1350cm−1): this was repeated for a series of pressures. These data are plotted in the top figure, with a linear fit. The point at which the fit shows a SNR of 2 (3 dB) is determined from the graph: we demonstrate a concentration of 3.28 × 10−10moles of acetone vapor interacting with the laser beam at this SNR. We note that the ideal gas law gives a value of 4.9 × 10−10 moles/mTorr as compared to the value of 7.3 × 10−10 moles/mTorr read off the graph, meaning that we are underestimating the sensitivity limit. Given the uncertainty in acetone concentration as a result of the headspace sampling method, we have not attempted to reconcile these numbers.

Fig. 5
Fig. 5

The baseline subtracted spectra of the chemicals acetone, acetonitrile, nitromethane are shown at 3.33 Pa (25 mTorr) (cyan), 6.66 Pa (50 mTorr) (magenta) and 13.33 Pa (100 mTorr) (yellow) pressures. Also shown is the spectra of an unknown mixture of the three at 13.33 Pa (100 mTorr) (yellow), 26.7 Pa (200 mTorr) (black) and 40 Pa (300 mTorr) (blue). The subtracted background is shown in Fig. 3

Fig. 6
Fig. 6

The 13.3 Pa (100 mTorr) background subtracted spectra of acetone (brown), acetonitrile (green), nitromethane (red) were used to compare with the unknown sample spectrum (blue). In this case (0.65 × acetone) + (0.2 × acetonitrile) + (1.6 × aitromethane) = Unknown Spectra. The subtracted background spectrum is shown in Fig. 3.

Fig. 7
Fig. 7

Polynomial fit to background, and residuals. We note that the sharp spikes observed in Figs. 2 and 3 are no longer present.

Fig. 8
Fig. 8

Top: 200 Pa Acetone combined with room air added the point where the cell was at atmospheric pressure (100,000 Pa). Bottom: Acetone in an open vial measured in the laboratory at several distance from the cell input. Distances range from 10 cm to 1 m, in 10 cm steps. All spectra are background subtracted, with the background spectrum shown in Fig. 7

Fig. 9
Fig. 9

Acetone in consecutive scans as the cell is filling up.

Fig. 10
Fig. 10

Demonstration of vibration insensitivity. The cavity was excited with a Phillip Harris vibration generator: the red curve shows the cavity transmission (at 150 kHz) with no excitation, the blue curve with maximum excitation. The sidebands are more than 70 dB below the transmission peak.

Fig. 11
Fig. 11

200 Pa (2 mbar) of Nitroglycerine with room air added the point where the cell was at atmospheric pressure.

Fig. 12
Fig. 12

1000 Pa (10 mbar) of nitromethane with room air added to the point where the cell was at atmospheric pressure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ = 1 ω 1 P 4 P 1
MDAL raw = 1 c ( 1 τ Δ τ 1 τ )

Metrics