Abstract

High quality near-infrared (NIR) persistent luminescence nanospheres (PLNPs) were synthesized using a simple mesoporous template method. The as-synthesized NIR persistent luminescence nanoparticles have uniform spherical morphology, tunable sizes, and a nominal composition of SiO2/CaMgSi2O6:Eu2+, Pr3+, Mn2+ (denoted as SEPM). Their NIR persistent luminescence at 660 nm can be detected during more than 1 hour. The in vivo distribution of the nanoparticles in the abdomen can be detected in real time after injection into the abdomen of a mouse. The nanoparticles can be metabolized from the lymph circulation and transferred from the abdomen to the bladder. The results indicate an effective method to offer high quality NIR persistent luminescence nanoprobes for imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, “Nanomaterials: applications in cancer imaging and therapy,” Adv. Mater. 23(12), H18–H40 (2011).
    [CrossRef] [PubMed]
  2. S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
    [CrossRef] [PubMed]
  3. J. Zhou, Z. Liu, F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
    [CrossRef] [PubMed]
  4. R. G. Aswathy, Y. Yoshida, T. Maekawa, D. S. Kumar, “Near-infrared quantum dots for deep tissue imaging,” Anal. Bioanal. Chem. 397(4), 1417–1435 (2010).
    [CrossRef] [PubMed]
  5. Z. Liu, K. Yang, S. T. Lee, “Single-walled carbon nanotubes in biomedical imaging,” J. Mater. Chem. 21(3), 586–598 (2011).
    [CrossRef]
  6. K. Welsher, S. P. Sherlock, H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U. S. A. 108(22), 8943–8948 (2011).
    [CrossRef] [PubMed]
  7. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
    [CrossRef] [PubMed]
  8. T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
    [CrossRef] [PubMed]
  9. T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
    [CrossRef] [PubMed]
  10. Z. W. Pan, Y. Y. Lu, F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
    [CrossRef] [PubMed]
  11. Q. Yang, Y. L. Liu, C. X. Yu, G. X. Zhu, L. Sha, Y. H. Yang, M. T. Zheng, B. F. Lei, “Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance,” Appl. Surf. Sci. 258(18), 6814–6818 (2012).
    [CrossRef]
  12. F. L. Sun, J. W. Zhao, “Blue-green BaAl2O4:Eu2+,Dy3+ phosphors synthesized via combustion synthesis method assisted by microwave irradiation,” J. Rare Earths 29(4), 326–329 (2011).
    [CrossRef]
  13. W. Y. Teoh, R. Amal, L. Mädler, “Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication,” Nanoscale 2(8), 1324–1347 (2010).
    [CrossRef] [PubMed]
  14. T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
    [CrossRef] [PubMed]
  15. L. Qin, Q. Zhu, G. Li, F. Liu, Q. Pan, “Controlled fabrication of flower–like ZnO–Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method,” J. Mater. Chem. 22(15), 7544–7550 (2012).
    [CrossRef]
  16. I. Tacchini, E. Terrado, A. Ansón, M. Martinez, “Anatase nanotubes synthesized by a template method and their application as a green photocatalyst,” J. Mater. Sci. 46(7), 2097–2104 (2011).
    [CrossRef]
  17. D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
    [CrossRef]
  18. H. Zhang, Z. Tan, P. Xu, K. Oh, R. Wu, W. Shi, Z. Jiao, “Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties,” J. Nanosci. Nanotechnol. 11(12), 11114–11118 (2011).
    [CrossRef] [PubMed]
  19. J. Zong, Y. Zhu, X. Yang, J. Shen, C. Li, “Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors,” Chem. Commun. 47(2), 764–766 (2011).
    [CrossRef] [PubMed]
  20. Z. Li, H. Zhang, H. Fu, “Facile synthesis and morphology control of Zn2SiO4:Mn nanophosphors using mesoporous silica nanoparticles as templates,” J. Lumin. 135, 79–83 (2013).
    [CrossRef]
  21. L. Zhan-Jun, Z. Hong-Wu, S. Meng, S. Jiang-Shan, F. Hai-Xia, “A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging,” J. Mater. Chem. 22(47), 24713–24720 (2012).
    [CrossRef]
  22. S. A. Hilderbrand, R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14(1), 71–79 (2010).
    [CrossRef] [PubMed]
  23. Z. A. Qiao, L. Zhang, M. Y. Guo, Y. L. Liu, Q. S. Huo, “Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide,” Chem. Mater. 21(16), 3823–3829 (2009).
    [CrossRef]
  24. A. Lecointre, A. Bessière, B. Viana, D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
    [CrossRef]
  25. C. Wu, Y. Ramaswamy, H. Zreiqat, “Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering,” Acta Biomater. 6(6), 2237–2245 (2010).
    [CrossRef] [PubMed]

2013

Z. Li, H. Zhang, H. Fu, “Facile synthesis and morphology control of Zn2SiO4:Mn nanophosphors using mesoporous silica nanoparticles as templates,” J. Lumin. 135, 79–83 (2013).
[CrossRef]

2012

L. Zhan-Jun, Z. Hong-Wu, S. Meng, S. Jiang-Shan, F. Hai-Xia, “A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging,” J. Mater. Chem. 22(47), 24713–24720 (2012).
[CrossRef]

J. Zhou, Z. Liu, F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

Z. W. Pan, Y. Y. Lu, F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[CrossRef] [PubMed]

Q. Yang, Y. L. Liu, C. X. Yu, G. X. Zhu, L. Sha, Y. H. Yang, M. T. Zheng, B. F. Lei, “Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance,” Appl. Surf. Sci. 258(18), 6814–6818 (2012).
[CrossRef]

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[CrossRef] [PubMed]

L. Qin, Q. Zhu, G. Li, F. Liu, Q. Pan, “Controlled fabrication of flower–like ZnO–Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method,” J. Mater. Chem. 22(15), 7544–7550 (2012).
[CrossRef]

2011

I. Tacchini, E. Terrado, A. Ansón, M. Martinez, “Anatase nanotubes synthesized by a template method and their application as a green photocatalyst,” J. Mater. Sci. 46(7), 2097–2104 (2011).
[CrossRef]

F. L. Sun, J. W. Zhao, “Blue-green BaAl2O4:Eu2+,Dy3+ phosphors synthesized via combustion synthesis method assisted by microwave irradiation,” J. Rare Earths 29(4), 326–329 (2011).
[CrossRef]

J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, “Nanomaterials: applications in cancer imaging and therapy,” Adv. Mater. 23(12), H18–H40 (2011).
[CrossRef] [PubMed]

S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[CrossRef] [PubMed]

Z. Liu, K. Yang, S. T. Lee, “Single-walled carbon nanotubes in biomedical imaging,” J. Mater. Chem. 21(3), 586–598 (2011).
[CrossRef]

K. Welsher, S. P. Sherlock, H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U. S. A. 108(22), 8943–8948 (2011).
[CrossRef] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[CrossRef] [PubMed]

H. Zhang, Z. Tan, P. Xu, K. Oh, R. Wu, W. Shi, Z. Jiao, “Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties,” J. Nanosci. Nanotechnol. 11(12), 11114–11118 (2011).
[CrossRef] [PubMed]

J. Zong, Y. Zhu, X. Yang, J. Shen, C. Li, “Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors,” Chem. Commun. 47(2), 764–766 (2011).
[CrossRef] [PubMed]

2010

A. Lecointre, A. Bessière, B. Viana, D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

C. Wu, Y. Ramaswamy, H. Zreiqat, “Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering,” Acta Biomater. 6(6), 2237–2245 (2010).
[CrossRef] [PubMed]

S. A. Hilderbrand, R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14(1), 71–79 (2010).
[CrossRef] [PubMed]

R. G. Aswathy, Y. Yoshida, T. Maekawa, D. S. Kumar, “Near-infrared quantum dots for deep tissue imaging,” Anal. Bioanal. Chem. 397(4), 1417–1435 (2010).
[CrossRef] [PubMed]

W. Y. Teoh, R. Amal, L. Mädler, “Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication,” Nanoscale 2(8), 1324–1347 (2010).
[CrossRef] [PubMed]

2009

Z. A. Qiao, L. Zhang, M. Y. Guo, Y. L. Liu, Q. S. Huo, “Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide,” Chem. Mater. 21(16), 3823–3829 (2009).
[CrossRef]

2007

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

2003

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Airenne, K. J.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[CrossRef] [PubMed]

Amal, R.

W. Y. Teoh, R. Amal, L. Mädler, “Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication,” Nanoscale 2(8), 1324–1347 (2010).
[CrossRef] [PubMed]

Ansón, A.

I. Tacchini, E. Terrado, A. Ansón, M. Martinez, “Anatase nanotubes synthesized by a template method and their application as a green photocatalyst,” J. Mater. Sci. 46(7), 2097–2104 (2011).
[CrossRef]

Aswathy, R. G.

R. G. Aswathy, Y. Yoshida, T. Maekawa, D. S. Kumar, “Near-infrared quantum dots for deep tissue imaging,” Anal. Bioanal. Chem. 397(4), 1417–1435 (2010).
[CrossRef] [PubMed]

Barreto, J. A.

J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, “Nanomaterials: applications in cancer imaging and therapy,” Adv. Mater. 23(12), H18–H40 (2011).
[CrossRef] [PubMed]

Bessière, A.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

A. Lecointre, A. Bessière, B. Viana, D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

Bessodes, M.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[CrossRef] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[CrossRef] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Brinker, C. J.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Chanéac, C.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Cheng, T.

S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[CrossRef] [PubMed]

Dai, H.

K. Welsher, S. P. Sherlock, H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U. S. A. 108(22), 8943–8948 (2011).
[CrossRef] [PubMed]

Fu, H.

Z. Li, H. Zhang, H. Fu, “Facile synthesis and morphology control of Zn2SiO4:Mn nanophosphors using mesoporous silica nanoparticles as templates,” J. Lumin. 135, 79–83 (2013).
[CrossRef]

Gourier, D.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

A. Lecointre, A. Bessière, B. Viana, D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Graham, B.

J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, “Nanomaterials: applications in cancer imaging and therapy,” Adv. Mater. 23(12), H18–H40 (2011).
[CrossRef] [PubMed]

Guo, M. Y.

Z. A. Qiao, L. Zhang, M. Y. Guo, Y. L. Liu, Q. S. Huo, “Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide,” Chem. Mater. 21(16), 3823–3829 (2009).
[CrossRef]

Hai-Xia, F.

L. Zhan-Jun, Z. Hong-Wu, S. Meng, S. Jiang-Shan, F. Hai-Xia, “A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging,” J. Mater. Chem. 22(47), 24713–24720 (2012).
[CrossRef]

Hampsey, J. E.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Hilderbrand, S. A.

S. A. Hilderbrand, R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14(1), 71–79 (2010).
[CrossRef] [PubMed]

Hong-Wu, Z.

L. Zhan-Jun, Z. Hong-Wu, S. Meng, S. Jiang-Shan, F. Hai-Xia, “A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging,” J. Mater. Chem. 22(47), 24713–24720 (2012).
[CrossRef]

Huo, Q. S.

Z. A. Qiao, L. Zhang, M. Y. Guo, Y. L. Liu, Q. S. Huo, “Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide,” Chem. Mater. 21(16), 3823–3829 (2009).
[CrossRef]

Ji, X. L.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Jiang, Y. B.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Jiang-Shan, S.

L. Zhan-Jun, Z. Hong-Wu, S. Meng, S. Jiang-Shan, F. Hai-Xia, “A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging,” J. Mater. Chem. 22(47), 24713–24720 (2012).
[CrossRef]

Jiao, Z.

H. Zhang, Z. Tan, P. Xu, K. Oh, R. Wu, W. Shi, Z. Jiao, “Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties,” J. Nanosci. Nanotechnol. 11(12), 11114–11118 (2011).
[CrossRef] [PubMed]

Jolivet, J. P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Kaikkonen, M. U.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[CrossRef] [PubMed]

Kubeil, M.

J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, “Nanomaterials: applications in cancer imaging and therapy,” Adv. Mater. 23(12), H18–H40 (2011).
[CrossRef] [PubMed]

Kumar, D. S.

R. G. Aswathy, Y. Yoshida, T. Maekawa, D. S. Kumar, “Near-infrared quantum dots for deep tissue imaging,” Anal. Bioanal. Chem. 397(4), 1417–1435 (2010).
[CrossRef] [PubMed]

le Masne de Chermont, Q.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[CrossRef] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Lecointre, A.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

A. Lecointre, A. Bessière, B. Viana, D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

Lee, S. T.

Z. Liu, K. Yang, S. T. Lee, “Single-walled carbon nanotubes in biomedical imaging,” J. Mater. Chem. 21(3), 586–598 (2011).
[CrossRef]

Lei, B. F.

Q. Yang, Y. L. Liu, C. X. Yu, G. X. Zhu, L. Sha, Y. H. Yang, M. T. Zheng, B. F. Lei, “Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance,” Appl. Surf. Sci. 258(18), 6814–6818 (2012).
[CrossRef]

Li, C.

J. Zong, Y. Zhu, X. Yang, J. Shen, C. Li, “Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors,” Chem. Commun. 47(2), 764–766 (2011).
[CrossRef] [PubMed]

Li, F.

J. Zhou, Z. Liu, F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

Li, G.

L. Qin, Q. Zhu, G. Li, F. Liu, Q. Pan, “Controlled fabrication of flower–like ZnO–Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method,” J. Mater. Chem. 22(15), 7544–7550 (2012).
[CrossRef]

Li, Z.

Z. Li, H. Zhang, H. Fu, “Facile synthesis and morphology control of Zn2SiO4:Mn nanophosphors using mesoporous silica nanoparticles as templates,” J. Lumin. 135, 79–83 (2013).
[CrossRef]

Liu, F.

L. Qin, Q. Zhu, G. Li, F. Liu, Q. Pan, “Controlled fabrication of flower–like ZnO–Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method,” J. Mater. Chem. 22(15), 7544–7550 (2012).
[CrossRef]

Z. W. Pan, Y. Y. Lu, F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[CrossRef] [PubMed]

Liu, Y. L.

Q. Yang, Y. L. Liu, C. X. Yu, G. X. Zhu, L. Sha, Y. H. Yang, M. T. Zheng, B. F. Lei, “Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance,” Appl. Surf. Sci. 258(18), 6814–6818 (2012).
[CrossRef]

Z. A. Qiao, L. Zhang, M. Y. Guo, Y. L. Liu, Q. S. Huo, “Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide,” Chem. Mater. 21(16), 3823–3829 (2009).
[CrossRef]

Liu, Z.

J. Zhou, Z. Liu, F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

Z. Liu, K. Yang, S. T. Lee, “Single-walled carbon nanotubes in biomedical imaging,” J. Mater. Chem. 21(3), 586–598 (2011).
[CrossRef]

Lu, Y. F.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Lu, Y. Y.

Z. W. Pan, Y. Y. Lu, F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[CrossRef] [PubMed]

Luo, S.

S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[CrossRef] [PubMed]

Mädler, L.

W. Y. Teoh, R. Amal, L. Mädler, “Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication,” Nanoscale 2(8), 1324–1347 (2010).
[CrossRef] [PubMed]

Maekawa, T.

R. G. Aswathy, Y. Yoshida, T. Maekawa, D. S. Kumar, “Near-infrared quantum dots for deep tissue imaging,” Anal. Bioanal. Chem. 397(4), 1417–1435 (2010).
[CrossRef] [PubMed]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Maldiney, T.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[CrossRef] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[CrossRef] [PubMed]

Martinez, M.

I. Tacchini, E. Terrado, A. Ansón, M. Martinez, “Anatase nanotubes synthesized by a template method and their application as a green photocatalyst,” J. Mater. Sci. 46(7), 2097–2104 (2011).
[CrossRef]

McCaughy, B. F.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Meng, S.

L. Zhan-Jun, Z. Hong-Wu, S. Meng, S. Jiang-Shan, F. Hai-Xia, “A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging,” J. Mater. Chem. 22(47), 24713–24720 (2012).
[CrossRef]

O’Connor, C.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

O’Malley, W.

J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, “Nanomaterials: applications in cancer imaging and therapy,” Adv. Mater. 23(12), H18–H40 (2011).
[CrossRef] [PubMed]

Oh, K.

H. Zhang, Z. Tan, P. Xu, K. Oh, R. Wu, W. Shi, Z. Jiao, “Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties,” J. Nanosci. Nanotechnol. 11(12), 11114–11118 (2011).
[CrossRef] [PubMed]

Pan, Q.

L. Qin, Q. Zhu, G. Li, F. Liu, Q. Pan, “Controlled fabrication of flower–like ZnO–Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method,” J. Mater. Chem. 22(15), 7544–7550 (2012).
[CrossRef]

Pan, Z. W.

Z. W. Pan, Y. Y. Lu, F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[CrossRef] [PubMed]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Qiao, Z. A.

Z. A. Qiao, L. Zhang, M. Y. Guo, Y. L. Liu, Q. S. Huo, “Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide,” Chem. Mater. 21(16), 3823–3829 (2009).
[CrossRef]

Qin, L.

L. Qin, Q. Zhu, G. Li, F. Liu, Q. Pan, “Controlled fabrication of flower–like ZnO–Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method,” J. Mater. Chem. 22(15), 7544–7550 (2012).
[CrossRef]

Ramaswamy, Y.

C. Wu, Y. Ramaswamy, H. Zreiqat, “Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering,” Acta Biomater. 6(6), 2237–2245 (2010).
[CrossRef] [PubMed]

Richard, C.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[CrossRef] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[CrossRef] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

Scherman, D.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[CrossRef] [PubMed]

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[CrossRef] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Schmehl, R. H.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Seguin, J.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[CrossRef] [PubMed]

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[CrossRef] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Sha, L.

Q. Yang, Y. L. Liu, C. X. Yu, G. X. Zhu, L. Sha, Y. H. Yang, M. T. Zheng, B. F. Lei, “Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance,” Appl. Surf. Sci. 258(18), 6814–6818 (2012).
[CrossRef]

Shen, J.

J. Zong, Y. Zhu, X. Yang, J. Shen, C. Li, “Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors,” Chem. Commun. 47(2), 764–766 (2011).
[CrossRef] [PubMed]

Sherlock, S. P.

K. Welsher, S. P. Sherlock, H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U. S. A. 108(22), 8943–8948 (2011).
[CrossRef] [PubMed]

Shi, C.

S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[CrossRef] [PubMed]

Shi, W.

H. Zhang, Z. Tan, P. Xu, K. Oh, R. Wu, W. Shi, Z. Jiao, “Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties,” J. Nanosci. Nanotechnol. 11(12), 11114–11118 (2011).
[CrossRef] [PubMed]

Spiccia, L.

J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, “Nanomaterials: applications in cancer imaging and therapy,” Adv. Mater. 23(12), H18–H40 (2011).
[CrossRef] [PubMed]

Stephan, H.

J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, “Nanomaterials: applications in cancer imaging and therapy,” Adv. Mater. 23(12), H18–H40 (2011).
[CrossRef] [PubMed]

Su, Y.

S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[CrossRef] [PubMed]

Sun, F. L.

F. L. Sun, J. W. Zhao, “Blue-green BaAl2O4:Eu2+,Dy3+ phosphors synthesized via combustion synthesis method assisted by microwave irradiation,” J. Rare Earths 29(4), 326–329 (2011).
[CrossRef]

Tacchini, I.

I. Tacchini, E. Terrado, A. Ansón, M. Martinez, “Anatase nanotubes synthesized by a template method and their application as a green photocatalyst,” J. Mater. Sci. 46(7), 2097–2104 (2011).
[CrossRef]

Tan, Z.

H. Zhang, Z. Tan, P. Xu, K. Oh, R. Wu, W. Shi, Z. Jiao, “Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties,” J. Nanosci. Nanotechnol. 11(12), 11114–11118 (2011).
[CrossRef] [PubMed]

Tang, J. K.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Teoh, W. Y.

W. Y. Teoh, R. Amal, L. Mädler, “Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication,” Nanoscale 2(8), 1324–1347 (2010).
[CrossRef] [PubMed]

Terrado, E.

I. Tacchini, E. Terrado, A. Ansón, M. Martinez, “Anatase nanotubes synthesized by a template method and their application as a green photocatalyst,” J. Mater. Sci. 46(7), 2097–2104 (2011).
[CrossRef]

Viana, B.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

A. Lecointre, A. Bessière, B. Viana, D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

Wang, D. H.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Wattier, N.

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[CrossRef] [PubMed]

Weissleder, R.

S. A. Hilderbrand, R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14(1), 71–79 (2010).
[CrossRef] [PubMed]

Welsher, K.

K. Welsher, S. P. Sherlock, H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U. S. A. 108(22), 8943–8948 (2011).
[CrossRef] [PubMed]

Wu, C.

C. Wu, Y. Ramaswamy, H. Zreiqat, “Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering,” Acta Biomater. 6(6), 2237–2245 (2010).
[CrossRef] [PubMed]

Wu, R.

H. Zhang, Z. Tan, P. Xu, K. Oh, R. Wu, W. Shi, Z. Jiao, “Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties,” J. Nanosci. Nanotechnol. 11(12), 11114–11118 (2011).
[CrossRef] [PubMed]

Xu, H. F.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Xu, P.

H. Zhang, Z. Tan, P. Xu, K. Oh, R. Wu, W. Shi, Z. Jiao, “Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties,” J. Nanosci. Nanotechnol. 11(12), 11114–11118 (2011).
[CrossRef] [PubMed]

Yang, K.

Z. Liu, K. Yang, S. T. Lee, “Single-walled carbon nanotubes in biomedical imaging,” J. Mater. Chem. 21(3), 586–598 (2011).
[CrossRef]

Yang, Q.

Q. Yang, Y. L. Liu, C. X. Yu, G. X. Zhu, L. Sha, Y. H. Yang, M. T. Zheng, B. F. Lei, “Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance,” Appl. Surf. Sci. 258(18), 6814–6818 (2012).
[CrossRef]

Yang, X.

J. Zong, Y. Zhu, X. Yang, J. Shen, C. Li, “Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors,” Chem. Commun. 47(2), 764–766 (2011).
[CrossRef] [PubMed]

Yang, Y. H.

Q. Yang, Y. L. Liu, C. X. Yu, G. X. Zhu, L. Sha, Y. H. Yang, M. T. Zheng, B. F. Lei, “Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance,” Appl. Surf. Sci. 258(18), 6814–6818 (2012).
[CrossRef]

Ylä-Herttuala, S.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[CrossRef] [PubMed]

Yoshida, Y.

R. G. Aswathy, Y. Yoshida, T. Maekawa, D. S. Kumar, “Near-infrared quantum dots for deep tissue imaging,” Anal. Bioanal. Chem. 397(4), 1417–1435 (2010).
[CrossRef] [PubMed]

Yu, C. X.

Q. Yang, Y. L. Liu, C. X. Yu, G. X. Zhu, L. Sha, Y. H. Yang, M. T. Zheng, B. F. Lei, “Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance,” Appl. Surf. Sci. 258(18), 6814–6818 (2012).
[CrossRef]

Zhang, E.

S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[CrossRef] [PubMed]

Zhang, H.

Z. Li, H. Zhang, H. Fu, “Facile synthesis and morphology control of Zn2SiO4:Mn nanophosphors using mesoporous silica nanoparticles as templates,” J. Lumin. 135, 79–83 (2013).
[CrossRef]

H. Zhang, Z. Tan, P. Xu, K. Oh, R. Wu, W. Shi, Z. Jiao, “Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties,” J. Nanosci. Nanotechnol. 11(12), 11114–11118 (2011).
[CrossRef] [PubMed]

Zhang, L.

Z. A. Qiao, L. Zhang, M. Y. Guo, Y. L. Liu, Q. S. Huo, “Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide,” Chem. Mater. 21(16), 3823–3829 (2009).
[CrossRef]

Zhan-Jun, L.

L. Zhan-Jun, Z. Hong-Wu, S. Meng, S. Jiang-Shan, F. Hai-Xia, “A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging,” J. Mater. Chem. 22(47), 24713–24720 (2012).
[CrossRef]

Zhao, J. W.

F. L. Sun, J. W. Zhao, “Blue-green BaAl2O4:Eu2+,Dy3+ phosphors synthesized via combustion synthesis method assisted by microwave irradiation,” J. Rare Earths 29(4), 326–329 (2011).
[CrossRef]

Zheng, M. T.

Q. Yang, Y. L. Liu, C. X. Yu, G. X. Zhu, L. Sha, Y. H. Yang, M. T. Zheng, B. F. Lei, “Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance,” Appl. Surf. Sci. 258(18), 6814–6818 (2012).
[CrossRef]

Zhou, J.

J. Zhou, Z. Liu, F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

Zhou, W. L.

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Zhu, G. X.

Q. Yang, Y. L. Liu, C. X. Yu, G. X. Zhu, L. Sha, Y. H. Yang, M. T. Zheng, B. F. Lei, “Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance,” Appl. Surf. Sci. 258(18), 6814–6818 (2012).
[CrossRef]

Zhu, Q.

L. Qin, Q. Zhu, G. Li, F. Liu, Q. Pan, “Controlled fabrication of flower–like ZnO–Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method,” J. Mater. Chem. 22(15), 7544–7550 (2012).
[CrossRef]

Zhu, Y.

J. Zong, Y. Zhu, X. Yang, J. Shen, C. Li, “Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors,” Chem. Commun. 47(2), 764–766 (2011).
[CrossRef] [PubMed]

Zong, J.

J. Zong, Y. Zhu, X. Yang, J. Shen, C. Li, “Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors,” Chem. Commun. 47(2), 764–766 (2011).
[CrossRef] [PubMed]

Zreiqat, H.

C. Wu, Y. Ramaswamy, H. Zreiqat, “Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering,” Acta Biomater. 6(6), 2237–2245 (2010).
[CrossRef] [PubMed]

ACS Nano

T. Maldiney, C. Richard, J. Seguin, N. Wattier, M. Bessodes, D. Scherman, “Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice,” ACS Nano 5(2), 854–862 (2011).
[CrossRef] [PubMed]

Acta Biomater.

C. Wu, Y. Ramaswamy, H. Zreiqat, “Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering,” Acta Biomater. 6(6), 2237–2245 (2010).
[CrossRef] [PubMed]

Adv. Mater.

J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, “Nanomaterials: applications in cancer imaging and therapy,” Adv. Mater. 23(12), H18–H40 (2011).
[CrossRef] [PubMed]

D. H. Wang, W. L. Zhou, B. F. McCaughy, J. E. Hampsey, X. L. Ji, Y. B. Jiang, H. F. Xu, J. K. Tang, R. H. Schmehl, C. O’Connor, C. J. Brinker, Y. F. Lu, “Electrodeposition of metallic nanowire thin films using mesoporous silica templates,” Adv. Mater. 15(2), 130–133 (2003).
[CrossRef]

Anal. Bioanal. Chem.

R. G. Aswathy, Y. Yoshida, T. Maekawa, D. S. Kumar, “Near-infrared quantum dots for deep tissue imaging,” Anal. Bioanal. Chem. 397(4), 1417–1435 (2010).
[CrossRef] [PubMed]

Appl. Surf. Sci.

Q. Yang, Y. L. Liu, C. X. Yu, G. X. Zhu, L. Sha, Y. H. Yang, M. T. Zheng, B. F. Lei, “Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance,” Appl. Surf. Sci. 258(18), 6814–6818 (2012).
[CrossRef]

Bioconjug. Chem.

T. Maldiney, M. U. Kaikkonen, J. Seguin, Q. le Masne de Chermont, M. Bessodes, K. J. Airenne, S. Ylä-Herttuala, D. Scherman, C. Richard, “In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles,” Bioconjug. Chem. 23(3), 472–478 (2012).
[CrossRef] [PubMed]

Biomaterials

S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi, “A review of NIR dyes in cancer targeting and imaging,” Biomaterials 32(29), 7127–7138 (2011).
[CrossRef] [PubMed]

Chem. Commun.

J. Zong, Y. Zhu, X. Yang, J. Shen, C. Li, “Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors,” Chem. Commun. 47(2), 764–766 (2011).
[CrossRef] [PubMed]

Chem. Mater.

Z. A. Qiao, L. Zhang, M. Y. Guo, Y. L. Liu, Q. S. Huo, “Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide,” Chem. Mater. 21(16), 3823–3829 (2009).
[CrossRef]

Chem. Soc. Rev.

J. Zhou, Z. Liu, F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol.

S. A. Hilderbrand, R. Weissleder, “Near-infrared fluorescence: application to in vivo molecular imaging,” Curr. Opin. Chem. Biol. 14(1), 71–79 (2010).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

T. Maldiney, A. Lecointre, B. Viana, A. Bessière, M. Bessodes, D. Gourier, C. Richard, D. Scherman, “Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging,” J. Am. Chem. Soc. 133(30), 11810–11815 (2011).
[CrossRef] [PubMed]

J. Lumin.

Z. Li, H. Zhang, H. Fu, “Facile synthesis and morphology control of Zn2SiO4:Mn nanophosphors using mesoporous silica nanoparticles as templates,” J. Lumin. 135, 79–83 (2013).
[CrossRef]

J. Mater. Chem.

L. Zhan-Jun, Z. Hong-Wu, S. Meng, S. Jiang-Shan, F. Hai-Xia, “A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging,” J. Mater. Chem. 22(47), 24713–24720 (2012).
[CrossRef]

L. Qin, Q. Zhu, G. Li, F. Liu, Q. Pan, “Controlled fabrication of flower–like ZnO–Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method,” J. Mater. Chem. 22(15), 7544–7550 (2012).
[CrossRef]

Z. Liu, K. Yang, S. T. Lee, “Single-walled carbon nanotubes in biomedical imaging,” J. Mater. Chem. 21(3), 586–598 (2011).
[CrossRef]

J. Mater. Sci.

I. Tacchini, E. Terrado, A. Ansón, M. Martinez, “Anatase nanotubes synthesized by a template method and their application as a green photocatalyst,” J. Mater. Sci. 46(7), 2097–2104 (2011).
[CrossRef]

J. Nanosci. Nanotechnol.

H. Zhang, Z. Tan, P. Xu, K. Oh, R. Wu, W. Shi, Z. Jiao, “Preparation of SnO2 nanowires by solvent-free method using mesoporous silica template and their gas sensitive properties,” J. Nanosci. Nanotechnol. 11(12), 11114–11118 (2011).
[CrossRef] [PubMed]

J. Rare Earths

F. L. Sun, J. W. Zhao, “Blue-green BaAl2O4:Eu2+,Dy3+ phosphors synthesized via combustion synthesis method assisted by microwave irradiation,” J. Rare Earths 29(4), 326–329 (2011).
[CrossRef]

Nanoscale

W. Y. Teoh, R. Amal, L. Mädler, “Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication,” Nanoscale 2(8), 1324–1347 (2010).
[CrossRef] [PubMed]

Nat. Mater.

Z. W. Pan, Y. Y. Lu, F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2012).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U. S. A.

K. Welsher, S. P. Sherlock, H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proc. Natl. Acad. Sci. U. S. A. 108(22), 8943–8948 (2011).
[CrossRef] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Radiat. Meas.

A. Lecointre, A. Bessière, B. Viana, D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

XRD patterns of the as-synthesized SEPM samples.

Fig. 2
Fig. 2

FE-SEM images of the as-synthesized MSNs-150 (A), SEPM-1000 (B), SEPM-1100 (C), SEPM-1200 (D), EDS analysis (E) and TEM (F) of SEPM-1000.

Fig. 3
Fig. 3

Luminescence properties of the SEPM samples: (A) photoluminescence emission spectra (excitation, 350 nm), (B) the influence of doping concentration of Mn2+ on the luminescence intensity at 450 nm and 685 nm, (C) persistent emission spectrum after pre-illumination by a 365 nm UV lamp for 10 min and (D) decay curve of SEPM-1000 monitored at 660 nm.

Fig. 4
Fig. 4

Scheme of the hydrophilic modification process (A), FTIR spectra (B), hydrodynamic size distribution (C) and zeta potential (D) of SEPM-Tween20.

Fig. 5
Fig. 5

Cell viability of HUVE cells after 24 h exposure to increasing doses of SEPM and SEPM-Tween20 by the MTT assay. Control cells were cultured in nanoparticle-free media. Results are expressed as mean ± SD of three independent experiments.

Fig. 6
Fig. 6

Luminescence images of the real-time distribution of the as-synthesized SEPM-Tween20 nanoparticles in the abdomen of a mouse after 1 min (A), 1 min, (B) 20 min, (C) 40 min, (D) 60 min of the injection.

Fig. 7
Fig. 7

Quantitative analysis of the real time distribution of the SEPM-Tween20 nanoparticles.

Metrics