Abstract

We report a fully stabilized 1030-nm Yb-fiber frequency comb operating at a pulse repetition frequency of 375 MHz. The comb spacing was referenced to a Rb-stabilized microwave synthesizer and the comb offset was stabilized by generating a super-continuum containing a coherent component at 780.2 nm which was heterodyned with a 87Rb-stabilized external cavity diode laser to produce a radio-frequency beat used to actuate the carrier-envelope offset frequency of the Yb-fiber laser. The two-sample frequency deviation of the locked comb was 235 kHz for an averaging time of 50 seconds, and the comb remained locked for over 60 minutes with a root mean squared deviation of 236 kHz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Marra, H. S. Margolis, D. J. Richardson, “Dissemination of an optical frequency comb over fiber with 3 × 10-18 fractional accuracy,” Opt. Express 20(2), 1775–1782 (2012).
    [CrossRef] [PubMed]
  2. R. W. Fox, S. A. Diddams, A. Bartels, L. Hollberg, “Optical frequency measurements with the global positioning system: tests with an iodine-stabilized He-Ne laser,” Appl. Opt. 44(1), 113–120 (2005).
    [CrossRef] [PubMed]
  3. P. Pal, W. H. Knox, I. Hartl, M. E. Fermann, “Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber,” Opt. Express 15(19), 12161–12166 (2007).
    [CrossRef] [PubMed]
  4. P. Li, G. Wang, C. Li, A. Wang, Z. Zhang, F. Meng, S. Cao, Z. Fang, “Characterization of the carrier envelope offset frequency from a 490 MHz Yb-fiber-ring laser,” Opt. Express 20(14), 16017–16022 (2012).
    [CrossRef] [PubMed]
  5. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
    [CrossRef]
  6. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [CrossRef] [PubMed]
  7. C. Li, G. Wang, T. Jiang, A. Wang, Z. Zhang, “750 MHz fundamental repetition rate femtosecond Yb:fiber ring laser,” Opt. Lett. 38(3), 314–316 (2013).
    [CrossRef] [PubMed]
  8. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
    [CrossRef] [PubMed]
  9. W.-Y. Cheng, T.-H. Wu, S.-W. Huang, S.-Y. Lin, C.-M. Wu, “Stabilizing the frequency of femtosecond Ti:sapphire comb laser by a novel scheme,” Appl. Phys. B 92(1), 13–18 (2008).
    [CrossRef]
  10. A. Benedick, D. Tyurikov, M. Gubin, R. Shewmon, I. Chuang, F. X. Kärtner, “Compact, Ti:sapphire-based, methane-stabilized optical molecular frequency comb and clock,” Opt. Lett. 34(14), 2168–2170 (2009).
    [CrossRef] [PubMed]
  11. D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
    [CrossRef]
  12. D. Hou, B. Ning, J. Wu, Z. Wang, J. Zhao, “Demonstration of a stable erbium-fiber-laser-based frequency comb based on a single rubidium atomic resonator,” Appl. Phys. Lett. 102(15), 151104 (2013), doi:.
    [CrossRef]
  13. D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014), doi:.
    [CrossRef]
  14. C. Farrell, K. A. Serrels, T. R. Lundquist, P. Vedagarbha, D. T. Reid, “Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser,” Opt. Lett. 37(10), 1778–1780 (2012).
    [CrossRef] [PubMed]
  15. J. Ye, S. Swartz, P. Jungner, J. L. Hall, “Hyperfine structure and absolute frequency of the (87)Rb 5P(3/2) state,” Opt. Lett. 21(16), 1280–1282 (1996).
    [CrossRef] [PubMed]

2014 (1)

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014), doi:.
[CrossRef]

2013 (3)

D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
[CrossRef]

D. Hou, B. Ning, J. Wu, Z. Wang, J. Zhao, “Demonstration of a stable erbium-fiber-laser-based frequency comb based on a single rubidium atomic resonator,” Appl. Phys. Lett. 102(15), 151104 (2013), doi:.
[CrossRef]

C. Li, G. Wang, T. Jiang, A. Wang, Z. Zhang, “750 MHz fundamental repetition rate femtosecond Yb:fiber ring laser,” Opt. Lett. 38(3), 314–316 (2013).
[CrossRef] [PubMed]

2012 (3)

2009 (1)

2008 (1)

W.-Y. Cheng, T.-H. Wu, S.-W. Huang, S.-Y. Lin, C.-M. Wu, “Stabilizing the frequency of femtosecond Ti:sapphire comb laser by a novel scheme,” Appl. Phys. B 92(1), 13–18 (2008).
[CrossRef]

2007 (1)

2005 (1)

2000 (2)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

1999 (1)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[CrossRef]

1996 (1)

Bartels, A.

Benedick, A.

Beverini, N.

D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
[CrossRef]

Cao, S.

Cheng, W.-Y.

W.-Y. Cheng, T.-H. Wu, S.-W. Huang, S.-Y. Lin, C.-M. Wu, “Stabilizing the frequency of femtosecond Ti:sapphire comb laser by a novel scheme,” Appl. Phys. B 92(1), 13–18 (2008).
[CrossRef]

Chepurov, S. V.

D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
[CrossRef]

Chuang, I.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

R. W. Fox, S. A. Diddams, A. Bartels, L. Hollberg, “Optical frequency measurements with the global positioning system: tests with an iodine-stabilized He-Ne laser,” Appl. Opt. 44(1), 113–120 (2005).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[CrossRef]

Fang, Z.

Farrell, C.

Fermann, M. E.

Fox, R. W.

Gubin, M.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

J. Ye, S. Swartz, P. Jungner, J. L. Hall, “Hyperfine structure and absolute frequency of the (87)Rb 5P(3/2) state,” Opt. Lett. 21(16), 1280–1282 (1996).
[CrossRef] [PubMed]

Hansch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

Hartl, I.

Hollberg, L.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

Hou, D.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014), doi:.
[CrossRef]

D. Hou, B. Ning, J. Wu, Z. Wang, J. Zhao, “Demonstration of a stable erbium-fiber-laser-based frequency comb based on a single rubidium atomic resonator,” Appl. Phys. Lett. 102(15), 151104 (2013), doi:.
[CrossRef]

Huang, S.-W.

W.-Y. Cheng, T.-H. Wu, S.-W. Huang, S.-Y. Lin, C.-M. Wu, “Stabilizing the frequency of femtosecond Ti:sapphire comb laser by a novel scheme,” Appl. Phys. B 92(1), 13–18 (2008).
[CrossRef]

Jiang, T.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

Jungner, P.

Kärtner, F. X.

Keller, U.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[CrossRef]

Knox, W. H.

Li, C.

Li, P.

Lin, S.-Y.

W.-Y. Cheng, T.-H. Wu, S.-W. Huang, S.-Y. Lin, C.-M. Wu, “Stabilizing the frequency of femtosecond Ti:sapphire comb laser by a novel scheme,” Appl. Phys. B 92(1), 13–18 (2008).
[CrossRef]

Lundquist, T. R.

Margolis, H. S.

Marra, G.

Meng, F.

Ning, B.

D. Hou, B. Ning, J. Wu, Z. Wang, J. Zhao, “Demonstration of a stable erbium-fiber-laser-based frequency comb based on a single rubidium atomic resonator,” Appl. Phys. Lett. 102(15), 151104 (2013), doi:.
[CrossRef]

Pal, P.

Poli, N.

D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
[CrossRef]

Prevedelli, M.

D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
[CrossRef]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Reid, D. T.

Ren, Q.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014), doi:.
[CrossRef]

Richardson, D. J.

Schioppo, M.

D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
[CrossRef]

Serrels, K. A.

Shewmon, R.

Sorrentino, F.

D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
[CrossRef]

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[CrossRef]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[CrossRef]

Sutyrin, D. V.

D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
[CrossRef]

Swartz, S.

Tarallo, M. G.

D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
[CrossRef]

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[CrossRef]

Tino, G. M.

D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
[CrossRef]

Tyurikov, D.

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

Vedagarbha, P.

Wang, A.

Wang, G.

Wang, Z.

D. Hou, B. Ning, J. Wu, Z. Wang, J. Zhao, “Demonstration of a stable erbium-fiber-laser-based frequency comb based on a single rubidium atomic resonator,” Appl. Phys. Lett. 102(15), 151104 (2013), doi:.
[CrossRef]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

Wu, C.-M.

W.-Y. Cheng, T.-H. Wu, S.-W. Huang, S.-Y. Lin, C.-M. Wu, “Stabilizing the frequency of femtosecond Ti:sapphire comb laser by a novel scheme,” Appl. Phys. B 92(1), 13–18 (2008).
[CrossRef]

Wu, J.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014), doi:.
[CrossRef]

D. Hou, B. Ning, J. Wu, Z. Wang, J. Zhao, “Demonstration of a stable erbium-fiber-laser-based frequency comb based on a single rubidium atomic resonator,” Appl. Phys. Lett. 102(15), 151104 (2013), doi:.
[CrossRef]

Wu, T.-H.

W.-Y. Cheng, T.-H. Wu, S.-W. Huang, S.-Y. Lin, C.-M. Wu, “Stabilizing the frequency of femtosecond Ti:sapphire comb laser by a novel scheme,” Appl. Phys. B 92(1), 13–18 (2008).
[CrossRef]

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

J. Ye, S. Swartz, P. Jungner, J. L. Hall, “Hyperfine structure and absolute frequency of the (87)Rb 5P(3/2) state,” Opt. Lett. 21(16), 1280–1282 (1996).
[CrossRef] [PubMed]

Zhang, S.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014), doi:.
[CrossRef]

Zhang, Z.

Zhao, J.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014), doi:.
[CrossRef]

D. Hou, B. Ning, J. Wu, Z. Wang, J. Zhao, “Demonstration of a stable erbium-fiber-laser-based frequency comb based on a single rubidium atomic resonator,” Appl. Phys. Lett. 102(15), 151104 (2013), doi:.
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

W.-Y. Cheng, T.-H. Wu, S.-W. Huang, S.-Y. Lin, C.-M. Wu, “Stabilizing the frequency of femtosecond Ti:sapphire comb laser by a novel scheme,” Appl. Phys. B 92(1), 13–18 (2008).
[CrossRef]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

D. Hou, B. Ning, J. Wu, Z. Wang, J. Zhao, “Demonstration of a stable erbium-fiber-laser-based frequency comb based on a single rubidium atomic resonator,” Appl. Phys. Lett. 102(15), 151104 (2013), doi:.
[CrossRef]

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014), doi:.
[CrossRef]

Opt. Commun. (1)

D. V. Sutyrin, N. Poli, N. Beverini, S. V. Chepurov, M. Prevedelli, M. Schioppo, F. Sorrentino, M. G. Tarallo, G. M. Tino, “Frequency noise performances of a Ti:sapphire optical frequency comb stabilized to an optical reference,” Opt. Commun. 291, 291–298 (2013).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[CrossRef] [PubMed]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configurations of the Yb:fiber laser and Rb-referenced ECDL (upper and lower blue boxes) and the comb stabilization scheme. PBS, polarizing beamsplitter; PC, personal computer; DAC, digital to analog converter; ADC, analog to digital convertor. For clarity, the pumping scheme for the Yb:fiber is not shown, however was the same as in [14].

Fig. 2
Fig. 2

(a) Yb-fiber laser spectrum; (b) super-continuum produced by the Yb:fiber laser; (c) spectrum of the Rb-locked ECDL; (d) spectrum of the ECDL and super-continuum light measured after the PCF; (e) combined ECDL and super-continuum spectra measured before the APD in the focal plane of the monochromator. All spectral intensity scales are linear.

Fig. 3
Fig. 3

RF spectrum of the heterodyne signal recorded with the repetition frequency of the Yb:fiber laser locked but without comb-offset stabilization. The signal at 375 MHz is fREP and those at 99 MHz and 276 MHz are the beats between the ECDL and the adjacent Yb:fiber super-continuum modes. Inset: Fourier transform of the time-series data sampled by the ADC over 4.1 µs, shown on a normalized intensity scale.

Fig. 4
Fig. 4

The RMS deviation (blue) and two-sample frequency deviation (red) of the comb-offset beat signal for comb-offset stabilization turned on (filled symbols) and turned off (open symbols). All data were recorded while the repetition frequency of the Yb:fiber was stabilized.

Fig. 5
Fig. 5

Comparison of the fluctuations in the beat frequency relative to the mean with comb-offset stabilization turned on (green symbols) and turned off (blue symbols) for averaging times of 50 s over a period of 60 minutes. All data were recorded while the repetition frequency of the Yb:fiber was stabilized.

Metrics