Abstract

A high-sensitivity fiber Bragg grating (FBG) force sensor based on direct optical power measurement is presented. The approach utilizes a novel structure where the FBG is mounted on a thin tube-like fixture spirally. Contact force measurement is achieved through direct measurement of the FBG reflection power at a single wavelength using a power meter. The measuring system in our approach is simple and does not require processing of massive amount of spectral data, enabling real-time contact force monitoring. When force is applied to the FBG sensor, the unique spiral structure leads to FBG chirping and reflection spectrum broadening. A proportional relationship and linear fit are found between the force applied (up to 1.55 N) and the optical power reflected by the proposed FBG sensor. An average sensitivity of 11.16 dB/N is experimentally achieved. This design significantly reduces system complexity and improves data processing speed, which has great practical value in real-time FBG sensing applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  2. K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett. 24(8), 700–702 (2012).
    [CrossRef]
  3. S. C. M. Ho, M. Razavi, A. Nazeri, G. Song, “FBG sensor for contact level monitoring and prediction of perforation in cardiac ablation,” Sensors (Basel) 12(2), 1002–1013 (2012).
    [CrossRef] [PubMed]
  4. K. Schröder, W. Ecke, M. Kautz, S. Willett, M. Jenzer, T. Bosselmann, “An approach to continuous on-site monitoring of contact forces in current collectors by a fiber optic sensing system,” Opt. Lasers Eng. 51(2), 172–179 (2013).
    [CrossRef]
  5. Y. Zhao, Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
    [CrossRef]
  6. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [CrossRef]
  7. F. Xie, S. Zhang, Y. Li, S. B. Lee, “Multiple in-fiber Bragg gratings sensor with a grating scale,” Measurement 31(2), 139–142 (2002).
    [CrossRef]
  8. A. D. Kersey, T. A. Berkoff, W. W. Morey, “Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection,” Opt. Lett. 18(1), 72–74 (1993).
    [CrossRef] [PubMed]
  9. R. Romero, O. Frazão, D. A. Pereira, H. M. Salgado, F. M. Araújo, L. A. Ferreira, “Intensity-referenced and temperature-independent curvature-sensing concept based on chirped fiber Bragg gratings,” Appl. Opt. 44(18), 3821–3826 (2005).
    [CrossRef] [PubMed]
  10. J. Song, H. Park, W. T. Han, U. C. Paek, and Y. Chung, “Induction of sinusoidal chirp in fiber Bragg grating and application to optical fiber sensing with intensity measurements.” Optical Fiber Sensors Conference Technical Digest, OFS15th, 231-234 (2002).
  11. T. Guo, Q. Zhao, H. Zhang, L. Xue, G. Li, B. Dong, B. Liu, W. Zhang, G. Kai, X. Dong, “Temperature-insensitive fiber Bragg grating force sensor via a bandwidth modulation and optical-power detection technique,” J. Lightwave Technol. 24(10), 3797–3802 (2006).
    [CrossRef]
  12. Y. Chen, J. Ge, K. W. Kwok, K. R. Nilsson, M. P. Fok, Z. T. Tse, “MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures,” J. Cardiovasc. Magn. Reson. 16(S1), 150–152 (2014).
    [CrossRef]
  13. X. Dong, B. O. Guan, S. Yuan, X. Dong, H. Y. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1), 91–95 (2002).
    [CrossRef]

2014 (1)

Y. Chen, J. Ge, K. W. Kwok, K. R. Nilsson, M. P. Fok, Z. T. Tse, “MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures,” J. Cardiovasc. Magn. Reson. 16(S1), 150–152 (2014).
[CrossRef]

2013 (1)

K. Schröder, W. Ecke, M. Kautz, S. Willett, M. Jenzer, T. Bosselmann, “An approach to continuous on-site monitoring of contact forces in current collectors by a fiber optic sensing system,” Opt. Lasers Eng. 51(2), 172–179 (2013).
[CrossRef]

2012 (2)

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

S. C. M. Ho, M. Razavi, A. Nazeri, G. Song, “FBG sensor for contact level monitoring and prediction of perforation in cardiac ablation,” Sensors (Basel) 12(2), 1002–1013 (2012).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (1)

Y. Zhao, Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[CrossRef]

2002 (2)

F. Xie, S. Zhang, Y. Li, S. B. Lee, “Multiple in-fiber Bragg gratings sensor with a grating scale,” Measurement 31(2), 139–142 (2002).
[CrossRef]

X. Dong, B. O. Guan, S. Yuan, X. Dong, H. Y. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1), 91–95 (2002).
[CrossRef]

1997 (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

1993 (1)

Araújo, F. M.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Berkoff, T. A.

Bosselmann, T.

K. Schröder, W. Ecke, M. Kautz, S. Willett, M. Jenzer, T. Bosselmann, “An approach to continuous on-site monitoring of contact forces in current collectors by a fiber optic sensing system,” Opt. Lasers Eng. 51(2), 172–179 (2013).
[CrossRef]

Chen, Y.

Y. Chen, J. Ge, K. W. Kwok, K. R. Nilsson, M. P. Fok, Z. T. Tse, “MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures,” J. Cardiovasc. Magn. Reson. 16(S1), 150–152 (2014).
[CrossRef]

Chung, K. M.

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Dong, B.

Dong, X.

T. Guo, Q. Zhao, H. Zhang, L. Xue, G. Li, B. Dong, B. Liu, W. Zhang, G. Kai, X. Dong, “Temperature-insensitive fiber Bragg grating force sensor via a bandwidth modulation and optical-power detection technique,” J. Lightwave Technol. 24(10), 3797–3802 (2006).
[CrossRef]

X. Dong, B. O. Guan, S. Yuan, X. Dong, H. Y. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1), 91–95 (2002).
[CrossRef]

X. Dong, B. O. Guan, S. Yuan, X. Dong, H. Y. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1), 91–95 (2002).
[CrossRef]

Ecke, W.

K. Schröder, W. Ecke, M. Kautz, S. Willett, M. Jenzer, T. Bosselmann, “An approach to continuous on-site monitoring of contact forces in current collectors by a fiber optic sensing system,” Opt. Lasers Eng. 51(2), 172–179 (2013).
[CrossRef]

Ferreira, L. A.

Fok, M. P.

Y. Chen, J. Ge, K. W. Kwok, K. R. Nilsson, M. P. Fok, Z. T. Tse, “MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures,” J. Cardiovasc. Magn. Reson. 16(S1), 150–152 (2014).
[CrossRef]

Frazão, O.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Ge, J.

Y. Chen, J. Ge, K. W. Kwok, K. R. Nilsson, M. P. Fok, Z. T. Tse, “MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures,” J. Cardiovasc. Magn. Reson. 16(S1), 150–152 (2014).
[CrossRef]

Guan, B. O.

X. Dong, B. O. Guan, S. Yuan, X. Dong, H. Y. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1), 91–95 (2002).
[CrossRef]

Guo, T.

Ho, S. C. M.

S. C. M. Ho, M. Razavi, A. Nazeri, G. Song, “FBG sensor for contact level monitoring and prediction of perforation in cardiac ablation,” Sensors (Basel) 12(2), 1002–1013 (2012).
[CrossRef] [PubMed]

Jenzer, M.

K. Schröder, W. Ecke, M. Kautz, S. Willett, M. Jenzer, T. Bosselmann, “An approach to continuous on-site monitoring of contact forces in current collectors by a fiber optic sensing system,” Opt. Lasers Eng. 51(2), 172–179 (2013).
[CrossRef]

Kai, G.

Kautz, M.

K. Schröder, W. Ecke, M. Kautz, S. Willett, M. Jenzer, T. Bosselmann, “An approach to continuous on-site monitoring of contact forces in current collectors by a fiber optic sensing system,” Opt. Lasers Eng. 51(2), 172–179 (2013).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “Fiber-optic Bragg grating strain sensor with drift-compensated high-resolution interferometric wavelength-shift detection,” Opt. Lett. 18(1), 72–74 (1993).
[CrossRef] [PubMed]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kwok, K. W.

Y. Chen, J. Ge, K. W. Kwok, K. R. Nilsson, M. P. Fok, Z. T. Tse, “MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures,” J. Cardiovasc. Magn. Reson. 16(S1), 150–152 (2014).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lee, S. B.

F. Xie, S. Zhang, Y. Li, S. B. Lee, “Multiple in-fiber Bragg gratings sensor with a grating scale,” Measurement 31(2), 139–142 (2002).
[CrossRef]

Li, G.

Li, Y.

F. Xie, S. Zhang, Y. Li, S. B. Lee, “Multiple in-fiber Bragg gratings sensor with a grating scale,” Measurement 31(2), 139–142 (2002).
[CrossRef]

Liao, Y.

Y. Zhao, Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[CrossRef]

Liu, B.

Liu, Z.

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

Lu, C.

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

Morey, W. W.

Nazeri, A.

S. C. M. Ho, M. Razavi, A. Nazeri, G. Song, “FBG sensor for contact level monitoring and prediction of perforation in cardiac ablation,” Sensors (Basel) 12(2), 1002–1013 (2012).
[CrossRef] [PubMed]

Nilsson, K. R.

Y. Chen, J. Ge, K. W. Kwok, K. R. Nilsson, M. P. Fok, Z. T. Tse, “MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures,” J. Cardiovasc. Magn. Reson. 16(S1), 150–152 (2014).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Pereira, D. A.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Rao, Y. J.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

Razavi, M.

S. C. M. Ho, M. Razavi, A. Nazeri, G. Song, “FBG sensor for contact level monitoring and prediction of perforation in cardiac ablation,” Sensors (Basel) 12(2), 1002–1013 (2012).
[CrossRef] [PubMed]

Romero, R.

Salgado, H. M.

Schröder, K.

K. Schröder, W. Ecke, M. Kautz, S. Willett, M. Jenzer, T. Bosselmann, “An approach to continuous on-site monitoring of contact forces in current collectors by a fiber optic sensing system,” Opt. Lasers Eng. 51(2), 172–179 (2013).
[CrossRef]

Song, G.

S. C. M. Ho, M. Razavi, A. Nazeri, G. Song, “FBG sensor for contact level monitoring and prediction of perforation in cardiac ablation,” Sensors (Basel) 12(2), 1002–1013 (2012).
[CrossRef] [PubMed]

Tam, H. Y.

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

X. Dong, B. O. Guan, S. Yuan, X. Dong, H. Y. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1), 91–95 (2002).
[CrossRef]

Tse, Z. T.

Y. Chen, J. Ge, K. W. Kwok, K. R. Nilsson, M. P. Fok, Z. T. Tse, “MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures,” J. Cardiovasc. Magn. Reson. 16(S1), 150–152 (2014).
[CrossRef]

Willett, S.

K. Schröder, W. Ecke, M. Kautz, S. Willett, M. Jenzer, T. Bosselmann, “An approach to continuous on-site monitoring of contact forces in current collectors by a fiber optic sensing system,” Opt. Lasers Eng. 51(2), 172–179 (2013).
[CrossRef]

Xie, F.

F. Xie, S. Zhang, Y. Li, S. B. Lee, “Multiple in-fiber Bragg gratings sensor with a grating scale,” Measurement 31(2), 139–142 (2002).
[CrossRef]

Xue, L.

Yuan, S.

X. Dong, B. O. Guan, S. Yuan, X. Dong, H. Y. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1), 91–95 (2002).
[CrossRef]

Zhang, H.

Zhang, S.

F. Xie, S. Zhang, Y. Li, S. B. Lee, “Multiple in-fiber Bragg gratings sensor with a grating scale,” Measurement 31(2), 139–142 (2002).
[CrossRef]

Zhang, W.

Zhao, Q.

Zhao, Y.

Y. Zhao, Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

K. M. Chung, Z. Liu, C. Lu, H. Y. Tam, “Highly sensitive compact force sensor based on microfiber Bragg grating,” IEEE Photon. Technol. Lett. 24(8), 700–702 (2012).
[CrossRef]

J. Cardiovasc. Magn. Reson. (1)

Y. Chen, J. Ge, K. W. Kwok, K. R. Nilsson, M. P. Fok, Z. T. Tse, “MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures,” J. Cardiovasc. Magn. Reson. 16(S1), 150–152 (2014).
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

Measurement (1)

F. Xie, S. Zhang, Y. Li, S. B. Lee, “Multiple in-fiber Bragg gratings sensor with a grating scale,” Measurement 31(2), 139–142 (2002).
[CrossRef]

Opt. Commun. (1)

X. Dong, B. O. Guan, S. Yuan, X. Dong, H. Y. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1), 91–95 (2002).
[CrossRef]

Opt. Lasers Eng. (2)

K. Schröder, W. Ecke, M. Kautz, S. Willett, M. Jenzer, T. Bosselmann, “An approach to continuous on-site monitoring of contact forces in current collectors by a fiber optic sensing system,” Opt. Lasers Eng. 51(2), 172–179 (2013).
[CrossRef]

Y. Zhao, Y. Liao, “Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Opt. Lasers Eng. 41(1), 1–18 (2004).
[CrossRef]

Opt. Lett. (1)

Sensors (Basel) (1)

S. C. M. Ho, M. Razavi, A. Nazeri, G. Song, “FBG sensor for contact level monitoring and prediction of perforation in cardiac ablation,” Sensors (Basel) 12(2), 1002–1013 (2012).
[CrossRef] [PubMed]

Other (1)

J. Song, H. Park, W. T. Han, U. C. Paek, and Y. Chung, “Induction of sinusoidal chirp in fiber Bragg grating and application to optical fiber sensing with intensity measurements.” Optical Fiber Sensors Conference Technical Digest, OFS15th, 231-234 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Illustration of the spiral-structured FBG force sensor mounted on a catheter. (b) Corresponding change in grating pitches under the influence of applied force.

Fig. 2
Fig. 2

(a) Illustration of the change in spectral shape under different amount of applied force. (b) Measurement system for the spiral-structured FBG force sensor.

Fig. 3
Fig. 3

(a) Measured FBG reflection spectra under different amount of applied force. (b) Reflection bandwidth of the FBG under different amount of applied force.

Fig. 4
Fig. 4

Measured reflection optical power of the spirally structured FBG at different amount of applied force.

Fig. 5
Fig. 5

(a)(b) Spiral FBG reflection spectra measured at different temperature under fixed force of 0 and 1.0 N. (c) Power measurement test at different temperature with temperature compensation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n e f f Λ

Metrics