Abstract

We propose a novel approach to generating millimeter-wave (MMW) ultrawideband (UWB) signal based on nonlinear polarization rotation (NPR) in a highly nonlinear fiber (HNLF). The MMW UWB signal is background-free by eliminating the baseband frequency components using an optical filter. The proposed scheme is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at 25.5 GHz has a 10-dB bandwidth of 7 GHz from 22 to 29 GHz, which fully satisfies the spectral mask regulated by the Federal Communications Commission (FCC).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, F. Zeng, Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
    [CrossRef]
  2. M. Ran, B. I. Lembrikov, Y. Ben Ezra, “Ultra-wideband radio-over-fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).
  3. S. Pan, J. P. Yao, “UWB over fiber communications: modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
    [CrossRef]
  4. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett. 32(10), 1223–1225 (2007).
    [CrossRef] [PubMed]
  5. Y. M. Chang, J. Lee, J. H. Lee, “Ultrawideband doublet pulse generation based on nonlinear polarization rotation of an elliptically polarized beam and its distribution over a fiber/wireless link,” Opt. Express 18(19), 20072–20085 (2010).
    [CrossRef] [PubMed]
  6. W. Li, L. X. Wang, W. Hofmann, N. H. Zhu, D. Bimberg, “Generation of ultra-wideband triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion,” Opt. Express 20(18), 20222–20227 (2012).
    [CrossRef] [PubMed]
  7. J. Li, Y. Liang, K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(17), 1172–1174 (2009).
    [CrossRef]
  8. Y. L. Guennec, R. Gary, “Optical frequency conversion for millimeter-wave ultra-wideband-over fiber systems,” IEEE Photon. Technol. Lett. 19(13), 996–998 (2007).
    [CrossRef]
  9. Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
    [CrossRef]
  10. W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, “Photonic MMW-UWB signal generation via DPMZM-based frequency up-conversion,” IEEE Photon. Technol. Lett. 25(19), 1875–1878 (2013).
    [CrossRef]
  11. F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, J. Lin, “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 18(15), 15870–15875 (2010).
    [CrossRef] [PubMed]
  12. T. Kawanishi, T. Sakamoto, M. Izutsu, “Ultrawide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wirel. Compon. Lett. 15(3), 153–155 (2005).
    [CrossRef]
  13. J. D. McKinney, “Background-free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett. 22(16), 1193–1195 (2010).
    [CrossRef]
  14. F. Zhang, S. Pan, “Background-free millimeter-wave ultra-wideband signal generation based on a dual-parallel Mach-Zehnder modulator,” Opt. Express 21(22), 27017–27022 (2013).
    [CrossRef] [PubMed]
  15. Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25(4), 335–337 (2013).
    [CrossRef]
  16. L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, N. H. Zhu, “High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation,” Opt. Lett. 38(4), 579–581 (2013).
    [CrossRef] [PubMed]
  17. W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, “Photonic generation of ultrawideband signals with large carrier frequency tunability based on an optical carrier phase-shifting method,” IEEE Photon. J. 5(5), 5502007 (2013).
    [CrossRef]
  18. W. Li, W. T. Wang, W. H. Sun, L. X. Wang, N. H. Zhu, “Photonic generation of background-free millimeter-wave ultra-wideband pulses based on a single dual-drive Mach-Zehnder modulator,” Opt. Lett. 39(5), 1201–1203 (2014).
    [CrossRef] [PubMed]
  19. S. Fu, W. D. Zhong, Y. J. Wen, P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber ampplications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
    [CrossRef]
  20. A. L. Campillo, “Orthogonally polarized single sideband modulator,” Opt. Lett. 32(21), 3152–3154 (2007).
    [CrossRef] [PubMed]

2014 (1)

2013 (5)

F. Zhang, S. Pan, “Background-free millimeter-wave ultra-wideband signal generation based on a dual-parallel Mach-Zehnder modulator,” Opt. Express 21(22), 27017–27022 (2013).
[CrossRef] [PubMed]

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25(4), 335–337 (2013).
[CrossRef]

L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, N. H. Zhu, “High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation,” Opt. Lett. 38(4), 579–581 (2013).
[CrossRef] [PubMed]

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, “Photonic generation of ultrawideband signals with large carrier frequency tunability based on an optical carrier phase-shifting method,” IEEE Photon. J. 5(5), 5502007 (2013).
[CrossRef]

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, “Photonic MMW-UWB signal generation via DPMZM-based frequency up-conversion,” IEEE Photon. Technol. Lett. 25(19), 1875–1878 (2013).
[CrossRef]

2012 (1)

2010 (5)

2009 (1)

J. Li, Y. Liang, K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(17), 1172–1174 (2009).
[CrossRef]

2008 (2)

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

S. Fu, W. D. Zhong, Y. J. Wen, P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber ampplications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

2007 (4)

A. L. Campillo, “Orthogonally polarized single sideband modulator,” Opt. Lett. 32(21), 3152–3154 (2007).
[CrossRef] [PubMed]

Y. L. Guennec, R. Gary, “Optical frequency conversion for millimeter-wave ultra-wideband-over fiber systems,” IEEE Photon. Technol. Lett. 19(13), 996–998 (2007).
[CrossRef]

J. Yao, F. Zeng, Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett. 32(10), 1223–1225 (2007).
[CrossRef] [PubMed]

2005 (1)

T. Kawanishi, T. Sakamoto, M. Izutsu, “Ultrawide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wirel. Compon. Lett. 15(3), 153–155 (2005).
[CrossRef]

Ben Ezra, Y.

M. Ran, B. I. Lembrikov, Y. Ben Ezra, “Ultra-wideband radio-over-fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).

Bimberg, D.

Campillo, A. L.

A. L. Campillo, “Orthogonally polarized single sideband modulator,” Opt. Lett. 32(21), 3152–3154 (2007).
[CrossRef] [PubMed]

Chang, Q.

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

Chang, Y. M.

Dong, J.

Du, Y.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25(4), 335–337 (2013).
[CrossRef]

Fu, S.

Gao, J.

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

Gary, R.

Y. L. Guennec, R. Gary, “Optical frequency conversion for millimeter-wave ultra-wideband-over fiber systems,” IEEE Photon. Technol. Lett. 19(13), 996–998 (2007).
[CrossRef]

Guennec, Y. L.

Y. L. Guennec, R. Gary, “Optical frequency conversion for millimeter-wave ultra-wideband-over fiber systems,” IEEE Photon. Technol. Lett. 19(13), 996–998 (2007).
[CrossRef]

Hofmann, W.

Hong, X.

Huang, D.

Izutsu, M.

T. Kawanishi, T. Sakamoto, M. Izutsu, “Ultrawide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wirel. Compon. Lett. 15(3), 153–155 (2005).
[CrossRef]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, M. Izutsu, “Ultrawide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wirel. Compon. Lett. 15(3), 153–155 (2005).
[CrossRef]

Lee, J.

Lee, J. H.

Lembrikov, B. I.

M. Ran, B. I. Lembrikov, Y. Ben Ezra, “Ultra-wideband radio-over-fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).

Li, J.

J. Li, Y. Liang, K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(17), 1172–1174 (2009).
[CrossRef]

Li, M.

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, “Photonic MMW-UWB signal generation via DPMZM-based frequency up-conversion,” IEEE Photon. Technol. Lett. 25(19), 1875–1878 (2013).
[CrossRef]

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, “Photonic generation of ultrawideband signals with large carrier frequency tunability based on an optical carrier phase-shifting method,” IEEE Photon. J. 5(5), 5502007 (2013).
[CrossRef]

Li, W.

Li, Y.

Liang, Y.

J. Li, Y. Liang, K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(17), 1172–1174 (2009).
[CrossRef]

Lin, J.

Liu, J.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25(4), 335–337 (2013).
[CrossRef]

Liu, J. G.

McKinney, J. D.

J. D. McKinney, “Background-free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett. 22(16), 1193–1195 (2010).
[CrossRef]

Pan, S.

Ran, M.

M. Ran, B. I. Lembrikov, Y. Ben Ezra, “Ultra-wideband radio-over-fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).

Sakamoto, T.

T. Kawanishi, T. Sakamoto, M. Izutsu, “Ultrawide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wirel. Compon. Lett. 15(3), 153–155 (2005).
[CrossRef]

Shum, P.

Su, Y.

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

Sun, W. H.

Tian, Y.

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

Wang, H.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25(4), 335–337 (2013).
[CrossRef]

L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, N. H. Zhu, “High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation,” Opt. Lett. 38(4), 579–581 (2013).
[CrossRef] [PubMed]

Wang, L.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25(4), 335–337 (2013).
[CrossRef]

Wang, L. X.

Wang, Q.

Wang, W. T.

Wen, Y. J.

S. Fu, W. D. Zhong, Y. J. Wen, P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber ampplications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

Wong, K. K. Y.

J. Li, Y. Liang, K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(17), 1172–1174 (2009).
[CrossRef]

Wu, J.

Xu, J.

Xu, K.

Yao, J.

Yao, J. P.

Ye, T.

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

Zeng, F.

Zhang, F.

Zhang, X.

Zheng, J.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25(4), 335–337 (2013).
[CrossRef]

Zheng, J. Y.

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, “Photonic generation of ultrawideband signals with large carrier frequency tunability based on an optical carrier phase-shifting method,” IEEE Photon. J. 5(5), 5502007 (2013).
[CrossRef]

L. X. Wang, W. Li, J. Y. Zheng, H. Wang, J. G. Liu, N. H. Zhu, “High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation,” Opt. Lett. 38(4), 579–581 (2013).
[CrossRef] [PubMed]

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, “Photonic MMW-UWB signal generation via DPMZM-based frequency up-conversion,” IEEE Photon. Technol. Lett. 25(19), 1875–1878 (2013).
[CrossRef]

Zhong, W. D.

S. Fu, W. D. Zhong, Y. J. Wen, P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber ampplications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

Zhu, N.

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25(4), 335–337 (2013).
[CrossRef]

Zhu, N. H.

IEEE Microw. Wirel. Compon. Lett. (1)

T. Kawanishi, T. Sakamoto, M. Izutsu, “Ultrawide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wirel. Compon. Lett. 15(3), 153–155 (2005).
[CrossRef]

IEEE Photon. J. (2)

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, “Photonic generation of ultrawideband signals with large carrier frequency tunability based on an optical carrier phase-shifting method,” IEEE Photon. J. 5(5), 5502007 (2013).
[CrossRef]

M. Ran, B. I. Lembrikov, Y. Ben Ezra, “Ultra-wideband radio-over-fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010).

IEEE Photon. Technol. Lett. (1)

S. Fu, W. D. Zhong, Y. J. Wen, P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber ampplications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

J. D. McKinney, “Background-free arbitrary waveform generation via polarization pulse shaping,” IEEE Photon. Technol. Lett. 22(16), 1193–1195 (2010).
[CrossRef]

Y. Du, J. Zheng, L. Wang, H. Wang, N. Zhu, J. Liu, “Widely-tunable and background-free ultra-wideband signals generation utilizing polarization modulation-based optical switch,” IEEE Photon. Technol. Lett. 25(4), 335–337 (2013).
[CrossRef]

J. Li, Y. Liang, K. K. Y. Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(17), 1172–1174 (2009).
[CrossRef]

Y. L. Guennec, R. Gary, “Optical frequency conversion for millimeter-wave ultra-wideband-over fiber systems,” IEEE Photon. Technol. Lett. 19(13), 996–998 (2007).
[CrossRef]

Q. Chang, Y. Tian, T. Ye, J. Gao, Y. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

W. Li, L. X. Wang, J. Y. Zheng, M. Li, N. H. Zhu, “Photonic MMW-UWB signal generation via DPMZM-based frequency up-conversion,” IEEE Photon. Technol. Lett. 25(19), 1875–1878 (2013).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (1)

A. L. Campillo, “Orthogonally polarized single sideband modulator,” Opt. Lett. 32(21), 3152–3154 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram and (b) operational principle of the proposed scheme. (LD: laser diode; IM: intensity modulator, AWG: arbitrary waveform generator; EDFA: erbium-doped fiber amplifier; PC: polarization controller; PolM: polarization modulator; HNLF: highly nonlinear fiber; Pol: polarizer; TOF: tunable optical filter: PD: photodetector.

Fig. 2
Fig. 2

Measured optical spectra at (a) the output of the optical coupler, (b) the output of the Pol, and (c) the output of the EDFA.

Fig. 3
Fig. 3

Measured waveforms of the MMW UWB (blue line) and the original baseband Sinc function pulse from the AWG (red line) and its inverted version (green line).

Fig. 4
Fig. 4

Measured electrical spectra of (a) the baseband Sinc function pulse from the AWG and (b) the generated MMW UWB signal.

Fig. 5
Fig. 5

Measured (a) electrical spectrum of the upcoverted signal using a LO at the frequency of 22.5 GHz and (b) the corresponding waveform.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P c (t)= P c [1+b(t)]/2
n s (t)= n s,l +2 n s,n P c (t) n f (t)= n f,l +2 n f,n P c (t)
E PolM (t)=[ E x E y ]= 1 2 [ expj[ ω p t+βcos( ω LO t)] expj[ ω p tβcos( ω LO t)+ φ 1 ] ]
E PolM (t)=[ E x E y ]= 1 2 exp(j ω p t)[ n= n= j n J n (β) exp(jn ω LO t) n= n= j n J n (β) exp(jn ω LO t) ]
E PolM (t)=[ E x E y ]= 1 2 exp(j ω p t)[ J 0 (β)+j J 1 (β)exp(j ω LO t)+j J 1 (β)exp(j ω LO t) J 0 (β)j J 1 (β)exp(j ω LO t)j J 1 (β)exp(j ω LO t) ].
E PolM (t)=[ E x ' E y ' ]= 1 2 exp(j ω p t)[ J 1 (β)exp(j ω LO t+jπ/2)+ J 1 (β)exp(j ω LO t+jπ/2) J 0 (β) ].
φ s (t)= k p L n s (t)= α s + β s P c (t) φ f (t)= k p L n f (t)= α f + β f P c (t)
E HNLF (t)=[ E f E s ]= 1 2 exp(j ω p t)[ J 1 (β)exp(j ω LO t+jπ/2)exp[j φ f (t)] + J 1 (β)exp(j ω LO t+jπ/2)exp[j φ f (t)] J 0 (β)exp[j φ s (t)] ].
E(t)= 1 2 exp(j ω p t){ J 1 (β)exp(j ω LO t+jπ/2)exp[j φ f (t)] + J 1 (β)exp(j ω LO t+jπ/2)exp[j φ f (t)]+ J 0 (β)exp[j φ s (t)+j φ 2 ]}
θ= φ f (t) φ s (t)+π/2 φ 2 = α f α s +( β f β s ) P c /2 φ 2 +( β f β s )b(t)/2+π/2.
i(t)E(t) E * (t) = J 0 2 (β)/4+ J 1 2 (β)/2+ J 0 (β) J 1 (β)cosθcos( ω LO t).
i(t) J 0 2 (β)/4+ J 1 2 (β)/2 J 0 (β) J 1 (β)(η1) β s b(t)cos( ω LO t)/2.

Metrics