Abstract

Gold circular sector-like nanoantennas (with a radius of 500 nm and a taper angle of 60°, 90°, and 120°) on glass are investigated in a near-infrared wavelength range (900 - 2100 nm). Amplitude- and phase-resolved near-field images of circular sector-like antenna modes at telecom wavelength feature a concentric circular line of phase contrast, demonstrating resonant excitation of a standing wave of counter-propagating surface plasmons, travelling between a tip and opposite circular edge of the antenna. Transmission spectra obtained in the range 900 - 2100 nm are in good agreement with numerical simulations, revealing the main feature of this antenna configuration, viz., the resonance wavelength, in contrast to triangular antennas, does not depend on the taper angle and is determined only by the sector radius. This feature together with a robust and easily predictable frequency response makes circular sector-like nanoantennas very promising for implementing bowtie antennas and attractive for many applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
    [CrossRef] [PubMed]
  2. M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nature Photonics 5, 349–356 (2011).
    [CrossRef]
  3. A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21,065306 (2010).
    [CrossRef] [PubMed]
  4. J. N. Farahani, D. W. Pohl, H. J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95,017402 (2005).
    [CrossRef] [PubMed]
  5. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat Mater 9, 205–213 (2010).
    [CrossRef] [PubMed]
  6. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008).
    [CrossRef]
  7. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat Mater 9, 193–204 (2010).
    [CrossRef] [PubMed]
  8. P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  9. L. Novotny, N. F. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
    [CrossRef]
  10. D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010).
    [CrossRef]
  11. A. Pors, O. Albrektsen, I. P. Radko, S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3,2155 (2013).
    [CrossRef] [PubMed]
  12. A. Pors, S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21, 27438–27451 (2013).
    [CrossRef] [PubMed]
  13. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
    [CrossRef]
  14. H. Fischer, O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [CrossRef] [PubMed]
  15. D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85,045434 (2012).
    [CrossRef]
  16. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98,266802 (2007).
    [CrossRef] [PubMed]
  17. T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77,115420 (2008).
    [CrossRef]
  18. A. Pors, M. Willatzen, O. Albrektsen, S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27, 1680–1687 (2010).
    [CrossRef]
  19. R. Zia, M. D. Selker, M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71,165431 (2005).
    [CrossRef]
  20. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
    [CrossRef]
  21. N. Ocelic, A. Huber, R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89,101124 (2006).
    [CrossRef]
  22. A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79,125439 (2009).
    [CrossRef]
  23. R. Esteban, R. Vogelgesang, J. Dorfmller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008)
    [CrossRef] [PubMed]
  24. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics 3, 287–291 (2009).
    [CrossRef]
  25. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
    [CrossRef] [PubMed]
  26. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature Photonics 5, 283–287 (2011).
    [CrossRef]
  27. P. B. Johnson, R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  28. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
    [CrossRef]
  29. T. Søndergaard, S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75,073402 (2007).
    [CrossRef]
  30. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  31. P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
    [CrossRef]

2013 (3)

A. Pors, O. Albrektsen, I. P. Radko, S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3,2155 (2013).
[CrossRef] [PubMed]

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

A. Pors, S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21, 27438–27451 (2013).
[CrossRef] [PubMed]

2012 (1)

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85,045434 (2012).
[CrossRef]

2011 (3)

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nature Photonics 5, 349–356 (2011).
[CrossRef]

L. Novotny, N. F. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[CrossRef]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature Photonics 5, 283–287 (2011).
[CrossRef]

2010 (7)

A. Pors, M. Willatzen, O. Albrektsen, S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27, 1680–1687 (2010).
[CrossRef]

D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010).
[CrossRef]

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat Mater 9, 193–204 (2010).
[CrossRef] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21,065306 (2010).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat Mater 9, 205–213 (2010).
[CrossRef] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[CrossRef]

2009 (3)

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79,125439 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics 3, 287–291 (2009).
[CrossRef]

2008 (5)

H. Fischer, O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[CrossRef] [PubMed]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
[CrossRef] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008)
[CrossRef] [PubMed]

T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77,115420 (2008).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008).
[CrossRef]

2007 (2)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98,266802 (2007).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75,073402 (2007).
[CrossRef]

2006 (1)

N. Ocelic, A. Huber, R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89,101124 (2006).
[CrossRef]

2005 (3)

R. Zia, M. D. Selker, M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71,165431 (2005).
[CrossRef]

J. N. Farahani, D. W. Pohl, H. J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95,017402 (2005).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

1972 (1)

P. B. Johnson, R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aizpurua, J.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[CrossRef]

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79,125439 (2009).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics 3, 287–291 (2009).
[CrossRef]

Albella, P.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Albrektsen, O.

A. Pors, O. Albrektsen, I. P. Radko, S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3,2155 (2013).
[CrossRef] [PubMed]

A. Pors, M. Willatzen, O. Albrektsen, S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27, 1680–1687 (2010).
[CrossRef]

Alonso-Gonzalez, P.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature Photonics 5, 283–287 (2011).
[CrossRef]

Arzubiaga, L.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature Photonics 5, 283–287 (2011).
[CrossRef]

Atwater, H. A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat Mater 9, 205–213 (2010).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat Mater 9, 193–204 (2010).
[CrossRef] [PubMed]

Beermann, J.

T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77,115420 (2008).
[CrossRef]

Bharadwaj, P.

Boltasseva, A.

T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77,115420 (2008).
[CrossRef]

Boreman, G. D.

Borisov, A.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[CrossRef]

Bozhevolnyi, S. I.

A. Pors, O. Albrektsen, I. P. Radko, S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3,2155 (2013).
[CrossRef] [PubMed]

A. Pors, S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21, 27438–27451 (2013).
[CrossRef] [PubMed]

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85,045434 (2012).
[CrossRef]

A. Pors, M. Willatzen, O. Albrektsen, S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27, 1680–1687 (2010).
[CrossRef]

D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010).
[CrossRef]

T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77,115420 (2008).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75,073402 (2007).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat Mater 9, 193–204 (2010).
[CrossRef] [PubMed]

R. Zia, M. D. Selker, M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71,165431 (2005).
[CrossRef]

Cabrini, S.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21,065306 (2010).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat Mater 9, 193–204 (2010).
[CrossRef] [PubMed]

Casanova, F.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature Photonics 5, 283–287 (2011).
[CrossRef]

Chen, J.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Christy, R.W.

P. B. Johnson, R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chuvilin, A.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature Photonics 5, 283–287 (2011).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Crozier, K.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics 3, 287–291 (2009).
[CrossRef]

Crozier, K. B.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[CrossRef]

Deutsch, B.

Dmitriev, A.

R. Esteban, R. Vogelgesang, J. Dorfmller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008)
[CrossRef] [PubMed]

Dorfmller, J.

R. Esteban, R. Vogelgesang, J. Dorfmller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008)
[CrossRef] [PubMed]

Eisler, H. J.

J. N. Farahani, D. W. Pohl, H. J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95,017402 (2005).
[CrossRef] [PubMed]

Esteban, R.

R. Esteban, R. Vogelgesang, J. Dorfmller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008)
[CrossRef] [PubMed]

Etrich, C.

R. Esteban, R. Vogelgesang, J. Dorfmller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008)
[CrossRef] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H. J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95,017402 (2005).
[CrossRef] [PubMed]

Fischer, H.

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Garcia de Abajo, F. J.

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79,125439 (2009).
[CrossRef]

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[CrossRef]

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79,125439 (2009).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics 3, 287–291 (2009).
[CrossRef]

Golmar, F.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85,045434 (2012).
[CrossRef]

D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010).
[CrossRef]

Harteneck, B.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21,065306 (2010).
[CrossRef] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H. J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95,017402 (2005).
[CrossRef] [PubMed]

Hillenbrand, R.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature Photonics 5, 283–287 (2011).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[CrossRef]

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79,125439 (2009).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics 3, 287–291 (2009).
[CrossRef]

N. Ocelic, A. Huber, R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89,101124 (2006).
[CrossRef]

Huang, L.

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

Huber, A.

N. Ocelic, A. Huber, R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89,101124 (2006).
[CrossRef]

Huber, A. J.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics 3, 287–291 (2009).
[CrossRef]

Huck, C.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Hueso, L. E.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature Photonics 5, 283–287 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jones, A. C.

Juan, M. L.

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nature Photonics 5, 349–356 (2011).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat Mater 9, 193–204 (2010).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kern, K.

R. Esteban, R. Vogelgesang, J. Dorfmller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008)
[CrossRef] [PubMed]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008).
[CrossRef]

Krenz, P. M.

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008).
[CrossRef]

Ly-Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

H. Fischer, O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[CrossRef] [PubMed]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008).
[CrossRef]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Neubrech, F.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Novotny, L.

L. Novotny, N. F. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98,266802 (2007).
[CrossRef] [PubMed]

Ocelic, N.

N. Ocelic, A. Huber, R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89,101124 (2006).
[CrossRef]

Ogletree, D. F.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21,065306 (2010).
[CrossRef] [PubMed]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008).
[CrossRef]

Olmon, R. L.

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H. J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95,017402 (2005).
[CrossRef] [PubMed]

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat Mater 9, 205–213 (2010).
[CrossRef] [PubMed]

Pors, A.

A. Pors, S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21, 27438–27451 (2013).
[CrossRef] [PubMed]

A. Pors, O. Albrektsen, I. P. Radko, S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3,2155 (2013).
[CrossRef] [PubMed]

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85,045434 (2012).
[CrossRef]

A. Pors, M. Willatzen, O. Albrektsen, S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27, 1680–1687 (2010).
[CrossRef]

Pucci, A.

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Quidant, R.

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nature Photonics 5, 349–356 (2011).
[CrossRef]

Radko, I. P.

A. Pors, O. Albrektsen, I. P. Radko, S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3,2155 (2013).
[CrossRef] [PubMed]

Raschke, M. B.

Righini, M.

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nature Photonics 5, 349–356 (2011).
[CrossRef]

Rockstuhl, C.

R. Esteban, R. Vogelgesang, J. Dorfmller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008)
[CrossRef] [PubMed]

Romero, I.

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79,125439 (2009).
[CrossRef]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Schmidt, M.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21,065306 (2010).
[CrossRef] [PubMed]

Schnell, M.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature Photonics 5, 283–287 (2011).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics 3, 287–291 (2009).
[CrossRef]

Schuck, P. J.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21,065306 (2010).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat Mater 9, 193–204 (2010).
[CrossRef] [PubMed]

Schwartzberg, A.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21,065306 (2010).
[CrossRef] [PubMed]

Selker, M. D.

R. Zia, M. D. Selker, M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71,165431 (2005).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Søndergaard, T.

T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77,115420 (2008).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75,073402 (2007).
[CrossRef]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008).
[CrossRef]

van Hulst, N. F.

L. Novotny, N. F. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[CrossRef]

Vogelgesang, R.

R. Esteban, R. Vogelgesang, J. Dorfmller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008)
[CrossRef] [PubMed]

Weber-Bargioni, A.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21,065306 (2010).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat Mater 9, 193–204 (2010).
[CrossRef] [PubMed]

Willatzen, M.

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85,045434 (2012).
[CrossRef]

A. Pors, M. Willatzen, O. Albrektsen, S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27, 1680–1687 (2010).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zia, R.

R. Zia, M. D. Selker, M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71,165431 (2005).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

N. Ocelic, A. Huber, R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89,101124 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

J. Phys. Chem. C (1)

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114, 7341–7345 (2010).
[CrossRef]

Nano Lett. (3)

W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
[CrossRef] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008)
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[CrossRef]

Nanotechnology (1)

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21,065306 (2010).
[CrossRef] [PubMed]

Nat Mater (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat Mater 9, 193–204 (2010).
[CrossRef] [PubMed]

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat Mater 9, 205–213 (2010).
[CrossRef] [PubMed]

Nature Photonics (1)

M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nature Photonics 5, 349–356 (2011).
[CrossRef]

Nature Photonics (5)

L. Novotny, N. F. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[CrossRef]

D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nature Photonics 2, 226–229 (2008).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics 3, 287–291 (2009).
[CrossRef]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nature Photonics 5, 283–287 (2011).
[CrossRef]

Opt. Express (3)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98,266802 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (6)

T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77,115420 (2008).
[CrossRef]

R. Zia, M. D. Selker, M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71,165431 (2005).
[CrossRef]

D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85,045434 (2012).
[CrossRef]

A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, J. Aizpurua, “Influence of the tip in near-field imaging of nanoparticle plasmonic modes: weak and strong coupling regimes,” Phys. Rev. B 79,125439 (2009).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75,073402 (2007).
[CrossRef]

P. B. Johnson, R.W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

P. Alonso-Gonzalez, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

J. N. Farahani, D. W. Pohl, H. J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95,017402 (2005).
[CrossRef] [PubMed]

Sci. Rep. (1)

A. Pors, O. Albrektsen, I. P. Radko, S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3,2155 (2013).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Design of the (a) circular sector-like plasmonic antenna and (b) triangular antenna.

Fig. 2
Fig. 2

(a) Experimental and (b) numerically calculated extinction cross section of x- (solid lines) and y-polarized light (dotted lines) for circular sector-like antennas with different taper angle: α = 60° (black), 90° (blue), and 120° (red). The radius is the same, R = 500 nm.

Fig. 3
Fig. 3

Numerically calculated extinction cross section of x- (solid lines) and y-polarized light (dotted lines) for circular sector-like antennas with different radius: R = 450 nm (black), 475 nm (blue), and 500 nm (red). The taper angle is the same, α = 90°.

Fig. 4
Fig. 4

(a) Pseudocolor s-SNOM images for the circular sector-like antenna with R = 500 nm and α = 90° at λ = 1500 nm, showing (from left to right) topography, optical amplitude and phase for x- and y-polarized incident light. (b) Scanning electron microscope (SEM) image of the same structure as in (a), and numerically calculated distributions of Ez amplitude and phase for x- and y-polarized incident light for the same structure. (c) Pseudocolor s-SNOM images of topography, optical amplitude and phase for the antennas with R = 500 nm and α = 60° and 120° at λ = 1500 nm. Linear color bars for topography and optical amplitude, as well as a periodic color bar for the optical phase images are shown. Polarization is shown with arrows.

Fig. 5
Fig. 5

(a) Numerically calculated extinction cross section of x-polarized light for small (L = 375 nm, solid lines) and large (L = 610 nm, dotted lines) triangular antennas with different taper angle: α = 60° (black), 90° (blue), and 120° (red). (b) Comparison of circular sector-like antennas (R = 500 nm, solid lines) with small (L = 375 nm, dashed lines) and large (L = 610 nm, dotted lines) triangular antennas in terms of extinction cross-section (black) and field enhancement (blue).

Fig. 6
Fig. 6

Ez amplitude (a) and phase (b) of circular sector-like antennas (R = 500 nm, left), small (L = 375 nm, middle) and large (L = 610 nm, right) triangular antennas, numerically calculated at 5 nm above structures for x-polarized incident light at λ = 1500 nm. (c) Distributions of total field amplitude for the same types of antennas, calculated in xz cross-section. The green arrow indicates the point used for evaluation of FE for Fig. 5(b). The top level of amplitude color bar, Emax, corresponds to FE of 10 for (a) and 30 for (c)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ ext = A ( 1 T ) ,

Metrics