Abstract

The concept of nanophotonic droplets, which are individual spherical polymer structures containing accurately coupled heterogeneous quantum dots, has been previously demonstrated. Such combinations are theoretically promising for their ability to induce novel optical functions. In this paper, we focus on the implementation of wavelength conversion as one of the fundamental optical functions of nanophotonic droplets. A novel mechanism involved in the formation of nanophotonic droplets and results of experimental verification of wavelength conversion using formed nanophotonic droplets are described. By a quantitative comparison with a corresponding sample consisting of randomly dispersed quantum dots, the effectiveness of proposal was successfully demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
    [CrossRef]
  2. H. Song, S. Lee, “Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices,” Nanotechnology 18(25), 255202 (2007).
    [CrossRef]
  3. Y.-L. Lee, B.-M. Huang, H.-T. Chien, “Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications,” Chem. Mater. 20(22), 6903–6905 (2008).
    [CrossRef]
  4. C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angew. Chem. Int. Ed. Engl. 49(17), 3014–3017 (2010).
    [CrossRef] [PubMed]
  5. S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, J. Leuthold, “Filter assisted wavelength conversion with quantum-Dot SOAs,” J. Lightwave Technol. 28(6), 882–897 (2010).
    [CrossRef]
  6. Y. Yonezawa, H. Kurokawa, T. Sato, “Excitation energy transfer between J-aggregates of cyanine dyes in mixed monolayer assemblies,” J. Lumin. 54(5), 285–295 (1993).
    [CrossRef]
  7. M. Watanabe, M. Herren, M. Morita, “Picosecond luminescence and excitation energy transfer in J- and H-aggregates of cyamine dyes on colloidal silica,” J. Lumin. 58(1–6), 198–201 (1994).
    [CrossRef]
  8. G. Springholz, V. Holy, M. Pinczolits, G. Bauer, “Self-organized growth of three- dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant,” Science 282(5389), 734–737 (1998).
    [CrossRef] [PubMed]
  9. A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004).
    [CrossRef]
  10. K. Akahane, N. Yamamoto, M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
    [CrossRef]
  11. S. Tomić, T. S. Jones, N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
    [CrossRef]
  12. A. Takata, R. Oshima, Y. Shoji, K. Akahane, Y. Okada, “Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy,” Physica E 42(10), 2745–2748 (2010).
    [CrossRef]
  13. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, eds., Principles of Nanophotonics (Taylor and Francis, 2008).
  14. M. Ohtsu, Dressed Photons (Springer-Verlag, 2013).
  15. S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, “Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process,” Appl. Phys. B 99(3), 415–422 (2010).
    [CrossRef]
  16. H. Fujiwara, T. Kawazoe, M. Ohtsu, “Nonadiabatic multi-step excitation for the blue–green light emission from dye grains induced by the near-infrared optical near-field,” Appl. Phys. B 98(2–3), 283–289 (2010).
    [CrossRef]
  17. T. Kawazoe, M. A. Mueed, M. Ohtsu, “Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the phonon-assisted optical near-field process,” Appl. Phys. B 104(4), 747–754 (2011).
    [CrossRef]
  18. K. Kitamura, T. Kawazoe, M. Ohtsu, “Homojunction-structured ZnO light-emitting diodes fabricated by dressed-photon assisted annealing,” Appl. Phys. B 107(2), 293–299 (2012).
    [CrossRef]
  19. T. Kawazoe, H. Fujiwara, K. Kobayashi, M. Ohtsu, “Visible light emission from dye molecular grains via infrared excitation based on the nonadiabatic transition induced by the optical near field,” J. Sel. Top. Quantum Electron. 15(5), 1380–1386 (2009).
    [CrossRef]
  20. N. Wada, T. Kawazoe, M. Ohtsu, “An optical and electrical relaxation oscillator using a Si homojunction structured light emitting diode,” Appl. Phys. B 108(1), 25–29 (2012).
    [CrossRef]
  21. N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Fixed-distance coupling and encapsulation of heterogeneous quantum dots using phonon-assisted photo-curing,” Appl. Phys. B 110(1), 39–45 (2013).
    [CrossRef]
  22. N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots,” Appl. Phys. B 110(3), 293–297 (2013).
    [CrossRef]
  23. N. Tate, M. Naruse, Y. Liu, T. Kawazoe, T. Yatsui, M. Ohtsu, “Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets,” Appl. Phys. B 112(4), 587–592 (2013).
    [CrossRef]
  24. A. Yariv, “Second-harmonics generation and parametric oscillation,” in Introduction to Optical Electronics, 1st ed. (Holt, Rinehert and Winston, 1985), Chap. 8, pp. 177–221.
  25. P. W. Atkins, “Spectroscopy2: Electronic transitions,” in Physical Chemistry, 6th ed. (Oxford University, 1998), Chap. 17, pp. 497–526.
  26. M. Ohtsu, ed., Progress in Nano-Electro-Optics II (Springer-Verlag, 2004).
  27. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
    [CrossRef] [PubMed]
  28. T. Kawazoe, K. Kobayashi, M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
    [CrossRef]

2013

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Fixed-distance coupling and encapsulation of heterogeneous quantum dots using phonon-assisted photo-curing,” Appl. Phys. B 110(1), 39–45 (2013).
[CrossRef]

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots,” Appl. Phys. B 110(3), 293–297 (2013).
[CrossRef]

N. Tate, M. Naruse, Y. Liu, T. Kawazoe, T. Yatsui, M. Ohtsu, “Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets,” Appl. Phys. B 112(4), 587–592 (2013).
[CrossRef]

2012

K. Kitamura, T. Kawazoe, M. Ohtsu, “Homojunction-structured ZnO light-emitting diodes fabricated by dressed-photon assisted annealing,” Appl. Phys. B 107(2), 293–299 (2012).
[CrossRef]

N. Wada, T. Kawazoe, M. Ohtsu, “An optical and electrical relaxation oscillator using a Si homojunction structured light emitting diode,” Appl. Phys. B 108(1), 25–29 (2012).
[CrossRef]

2011

T. Kawazoe, M. A. Mueed, M. Ohtsu, “Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the phonon-assisted optical near-field process,” Appl. Phys. B 104(4), 747–754 (2011).
[CrossRef]

2010

A. Takata, R. Oshima, Y. Shoji, K. Akahane, Y. Okada, “Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy,” Physica E 42(10), 2745–2748 (2010).
[CrossRef]

S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, “Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process,” Appl. Phys. B 99(3), 415–422 (2010).
[CrossRef]

H. Fujiwara, T. Kawazoe, M. Ohtsu, “Nonadiabatic multi-step excitation for the blue–green light emission from dye grains induced by the near-infrared optical near-field,” Appl. Phys. B 98(2–3), 283–289 (2010).
[CrossRef]

C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angew. Chem. Int. Ed. Engl. 49(17), 3014–3017 (2010).
[CrossRef] [PubMed]

S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, J. Leuthold, “Filter assisted wavelength conversion with quantum-Dot SOAs,” J. Lightwave Technol. 28(6), 882–897 (2010).
[CrossRef]

2009

T. Kawazoe, H. Fujiwara, K. Kobayashi, M. Ohtsu, “Visible light emission from dye molecular grains via infrared excitation based on the nonadiabatic transition induced by the optical near field,” J. Sel. Top. Quantum Electron. 15(5), 1380–1386 (2009).
[CrossRef]

2008

K. Akahane, N. Yamamoto, M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[CrossRef]

S. Tomić, T. S. Jones, N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
[CrossRef]

Y.-L. Lee, B.-M. Huang, H.-T. Chien, “Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications,” Chem. Mater. 20(22), 6903–6905 (2008).
[CrossRef]

2007

H. Song, S. Lee, “Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices,” Nanotechnology 18(25), 255202 (2007).
[CrossRef]

2005

T. Kawazoe, K. Kobayashi, M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[CrossRef]

2004

A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004).
[CrossRef]

2003

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
[CrossRef]

2002

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

1998

G. Springholz, V. Holy, M. Pinczolits, G. Bauer, “Self-organized growth of three- dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant,” Science 282(5389), 734–737 (1998).
[CrossRef] [PubMed]

1994

M. Watanabe, M. Herren, M. Morita, “Picosecond luminescence and excitation energy transfer in J- and H-aggregates of cyamine dyes on colloidal silica,” J. Lumin. 58(1–6), 198–201 (1994).
[CrossRef]

1993

Y. Yonezawa, H. Kurokawa, T. Sato, “Excitation energy transfer between J-aggregates of cyanine dyes in mixed monolayer assemblies,” J. Lumin. 54(5), 285–295 (1993).
[CrossRef]

Akahane, K.

A. Takata, R. Oshima, Y. Shoji, K. Akahane, Y. Okada, “Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy,” Physica E 42(10), 2745–2748 (2010).
[CrossRef]

K. Akahane, N. Yamamoto, M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[CrossRef]

Bauer, G.

G. Springholz, V. Holy, M. Pinczolits, G. Bauer, “Self-organized growth of three- dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant,” Science 282(5389), 734–737 (1998).
[CrossRef] [PubMed]

Bonk, R.

Bozano, L. D.

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
[CrossRef]

Brenot, R.

Carter, K. R.

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
[CrossRef]

Chen, J. P.

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
[CrossRef]

Chien, H.-T.

Y.-L. Lee, B.-M. Huang, H.-T. Chien, “Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications,” Chem. Mater. 20(22), 6903–6905 (2008).
[CrossRef]

Cuadra, L.

A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004).
[CrossRef]

Duan, G.-H.

Freude, W.

Fujiwara, H.

H. Fujiwara, T. Kawazoe, M. Ohtsu, “Nonadiabatic multi-step excitation for the blue–green light emission from dye grains induced by the near-infrared optical near-field,” Appl. Phys. B 98(2–3), 283–289 (2010).
[CrossRef]

T. Kawazoe, H. Fujiwara, K. Kobayashi, M. Ohtsu, “Visible light emission from dye molecular grains via infrared excitation based on the nonadiabatic transition induced by the optical near field,” J. Sel. Top. Quantum Electron. 15(5), 1380–1386 (2009).
[CrossRef]

Guo, C. X.

C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angew. Chem. Int. Ed. Engl. 49(17), 3014–3017 (2010).
[CrossRef] [PubMed]

Harrison, N. M.

S. Tomić, T. S. Jones, N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
[CrossRef]

Herren, M.

M. Watanabe, M. Herren, M. Morita, “Picosecond luminescence and excitation energy transfer in J- and H-aggregates of cyamine dyes on colloidal silica,” J. Lumin. 58(1–6), 198–201 (1994).
[CrossRef]

Holy, V.

G. Springholz, V. Holy, M. Pinczolits, G. Bauer, “Self-organized growth of three- dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant,” Science 282(5389), 734–737 (1998).
[CrossRef] [PubMed]

Huang, B.-M.

Y.-L. Lee, B.-M. Huang, H.-T. Chien, “Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications,” Chem. Mater. 20(22), 6903–6905 (2008).
[CrossRef]

Jones, T. S.

S. Tomić, T. S. Jones, N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
[CrossRef]

Kawazoe, T.

N. Tate, M. Naruse, Y. Liu, T. Kawazoe, T. Yatsui, M. Ohtsu, “Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets,” Appl. Phys. B 112(4), 587–592 (2013).
[CrossRef]

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Fixed-distance coupling and encapsulation of heterogeneous quantum dots using phonon-assisted photo-curing,” Appl. Phys. B 110(1), 39–45 (2013).
[CrossRef]

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots,” Appl. Phys. B 110(3), 293–297 (2013).
[CrossRef]

K. Kitamura, T. Kawazoe, M. Ohtsu, “Homojunction-structured ZnO light-emitting diodes fabricated by dressed-photon assisted annealing,” Appl. Phys. B 107(2), 293–299 (2012).
[CrossRef]

N. Wada, T. Kawazoe, M. Ohtsu, “An optical and electrical relaxation oscillator using a Si homojunction structured light emitting diode,” Appl. Phys. B 108(1), 25–29 (2012).
[CrossRef]

T. Kawazoe, M. A. Mueed, M. Ohtsu, “Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the phonon-assisted optical near-field process,” Appl. Phys. B 104(4), 747–754 (2011).
[CrossRef]

S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, “Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process,” Appl. Phys. B 99(3), 415–422 (2010).
[CrossRef]

H. Fujiwara, T. Kawazoe, M. Ohtsu, “Nonadiabatic multi-step excitation for the blue–green light emission from dye grains induced by the near-infrared optical near-field,” Appl. Phys. B 98(2–3), 283–289 (2010).
[CrossRef]

T. Kawazoe, H. Fujiwara, K. Kobayashi, M. Ohtsu, “Visible light emission from dye molecular grains via infrared excitation based on the nonadiabatic transition induced by the optical near field,” J. Sel. Top. Quantum Electron. 15(5), 1380–1386 (2009).
[CrossRef]

T. Kawazoe, K. Kobayashi, M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Kitamura, K.

K. Kitamura, T. Kawazoe, M. Ohtsu, “Homojunction-structured ZnO light-emitting diodes fabricated by dressed-photon assisted annealing,” Appl. Phys. B 107(2), 293–299 (2012).
[CrossRef]

S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, “Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process,” Appl. Phys. B 99(3), 415–422 (2010).
[CrossRef]

Kobayashi, K.

T. Kawazoe, H. Fujiwara, K. Kobayashi, M. Ohtsu, “Visible light emission from dye molecular grains via infrared excitation based on the nonadiabatic transition induced by the optical near field,” J. Sel. Top. Quantum Electron. 15(5), 1380–1386 (2009).
[CrossRef]

T. Kawazoe, K. Kobayashi, M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Kurokawa, H.

Y. Yonezawa, H. Kurokawa, T. Sato, “Excitation energy transfer between J-aggregates of cyanine dyes in mixed monolayer assemblies,” J. Lumin. 54(5), 285–295 (1993).
[CrossRef]

Lee, S.

H. Song, S. Lee, “Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices,” Nanotechnology 18(25), 255202 (2007).
[CrossRef]

Lee, Y.-L.

Y.-L. Lee, B.-M. Huang, H.-T. Chien, “Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications,” Chem. Mater. 20(22), 6903–6905 (2008).
[CrossRef]

Lelarge, F.

Leuthold, J.

Li, C. M.

C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angew. Chem. Int. Ed. Engl. 49(17), 3014–3017 (2010).
[CrossRef] [PubMed]

Li, J.

Lim, J.

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Liu, Y.

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Fixed-distance coupling and encapsulation of heterogeneous quantum dots using phonon-assisted photo-curing,” Appl. Phys. B 110(1), 39–45 (2013).
[CrossRef]

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots,” Appl. Phys. B 110(3), 293–297 (2013).
[CrossRef]

N. Tate, M. Naruse, Y. Liu, T. Kawazoe, T. Yatsui, M. Ohtsu, “Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets,” Appl. Phys. B 112(4), 587–592 (2013).
[CrossRef]

López, N.

A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004).
[CrossRef]

Lu, Z. S.

C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angew. Chem. Int. Ed. Engl. 49(17), 3014–3017 (2010).
[CrossRef] [PubMed]

Luque, A.

A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004).
[CrossRef]

Marculescu, A.

Martí, A.

A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004).
[CrossRef]

McKee, A.

A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004).
[CrossRef]

Morita, M.

M. Watanabe, M. Herren, M. Morita, “Picosecond luminescence and excitation energy transfer in J- and H-aggregates of cyamine dyes on colloidal silica,” J. Lumin. 58(1–6), 198–201 (1994).
[CrossRef]

Mueed, M. A.

T. Kawazoe, M. A. Mueed, M. Ohtsu, “Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the phonon-assisted optical near-field process,” Appl. Phys. B 104(4), 747–754 (2011).
[CrossRef]

Narita, Y.

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Naruse, M.

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Fixed-distance coupling and encapsulation of heterogeneous quantum dots using phonon-assisted photo-curing,” Appl. Phys. B 110(1), 39–45 (2013).
[CrossRef]

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots,” Appl. Phys. B 110(3), 293–297 (2013).
[CrossRef]

N. Tate, M. Naruse, Y. Liu, T. Kawazoe, T. Yatsui, M. Ohtsu, “Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets,” Appl. Phys. B 112(4), 587–592 (2013).
[CrossRef]

Nomura, W.

S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, “Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process,” Appl. Phys. B 99(3), 415–422 (2010).
[CrossRef]

Ohtsu, M.

N. Tate, M. Naruse, Y. Liu, T. Kawazoe, T. Yatsui, M. Ohtsu, “Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets,” Appl. Phys. B 112(4), 587–592 (2013).
[CrossRef]

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots,” Appl. Phys. B 110(3), 293–297 (2013).
[CrossRef]

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Fixed-distance coupling and encapsulation of heterogeneous quantum dots using phonon-assisted photo-curing,” Appl. Phys. B 110(1), 39–45 (2013).
[CrossRef]

K. Kitamura, T. Kawazoe, M. Ohtsu, “Homojunction-structured ZnO light-emitting diodes fabricated by dressed-photon assisted annealing,” Appl. Phys. B 107(2), 293–299 (2012).
[CrossRef]

N. Wada, T. Kawazoe, M. Ohtsu, “An optical and electrical relaxation oscillator using a Si homojunction structured light emitting diode,” Appl. Phys. B 108(1), 25–29 (2012).
[CrossRef]

T. Kawazoe, M. A. Mueed, M. Ohtsu, “Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the phonon-assisted optical near-field process,” Appl. Phys. B 104(4), 747–754 (2011).
[CrossRef]

S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, “Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process,” Appl. Phys. B 99(3), 415–422 (2010).
[CrossRef]

H. Fujiwara, T. Kawazoe, M. Ohtsu, “Nonadiabatic multi-step excitation for the blue–green light emission from dye grains induced by the near-infrared optical near-field,” Appl. Phys. B 98(2–3), 283–289 (2010).
[CrossRef]

T. Kawazoe, H. Fujiwara, K. Kobayashi, M. Ohtsu, “Visible light emission from dye molecular grains via infrared excitation based on the nonadiabatic transition induced by the optical near field,” J. Sel. Top. Quantum Electron. 15(5), 1380–1386 (2009).
[CrossRef]

T. Kawazoe, K. Kobayashi, M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Okada, Y.

A. Takata, R. Oshima, Y. Shoji, K. Akahane, Y. Okada, “Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy,” Physica E 42(10), 2745–2748 (2010).
[CrossRef]

Oshima, R.

A. Takata, R. Oshima, Y. Shoji, K. Akahane, Y. Okada, “Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy,” Physica E 42(10), 2745–2748 (2010).
[CrossRef]

Pearson, J. L.

A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004).
[CrossRef]

Pinczolits, M.

G. Springholz, V. Holy, M. Pinczolits, G. Bauer, “Self-organized growth of three- dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant,” Science 282(5389), 734–737 (1998).
[CrossRef] [PubMed]

Salem, J. R.

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
[CrossRef]

Sato, T.

Y. Yonezawa, H. Kurokawa, T. Sato, “Excitation energy transfer between J-aggregates of cyanine dyes in mixed monolayer assemblies,” J. Lumin. 54(5), 285–295 (1993).
[CrossRef]

Scott, J. C.

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
[CrossRef]

Sheng, Z. M.

C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angew. Chem. Int. Ed. Engl. 49(17), 3014–3017 (2010).
[CrossRef] [PubMed]

Shoji, Y.

A. Takata, R. Oshima, Y. Shoji, K. Akahane, Y. Okada, “Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy,” Physica E 42(10), 2745–2748 (2010).
[CrossRef]

Song, H.

H. Song, S. Lee, “Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices,” Nanotechnology 18(25), 255202 (2007).
[CrossRef]

Song, Q. L.

C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angew. Chem. Int. Ed. Engl. 49(17), 3014–3017 (2010).
[CrossRef] [PubMed]

Springholz, G.

G. Springholz, V. Holy, M. Pinczolits, G. Bauer, “Self-organized growth of three- dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant,” Science 282(5389), 734–737 (1998).
[CrossRef] [PubMed]

Stanley, C.

A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004).
[CrossRef]

Swanson, S. A.

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
[CrossRef]

Sygletos, S.

Takata, A.

A. Takata, R. Oshima, Y. Shoji, K. Akahane, Y. Okada, “Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy,” Physica E 42(10), 2745–2748 (2010).
[CrossRef]

Tate, N.

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Fixed-distance coupling and encapsulation of heterogeneous quantum dots using phonon-assisted photo-curing,” Appl. Phys. B 110(1), 39–45 (2013).
[CrossRef]

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots,” Appl. Phys. B 110(3), 293–297 (2013).
[CrossRef]

N. Tate, M. Naruse, Y. Liu, T. Kawazoe, T. Yatsui, M. Ohtsu, “Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets,” Appl. Phys. B 112(4), 587–592 (2013).
[CrossRef]

Tomic, S.

S. Tomić, T. S. Jones, N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
[CrossRef]

Tsuchiya, M.

K. Akahane, N. Yamamoto, M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[CrossRef]

Vallaitis, T.

Villa, R.

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
[CrossRef]

Vorreau, P.

Wada, N.

N. Wada, T. Kawazoe, M. Ohtsu, “An optical and electrical relaxation oscillator using a Si homojunction structured light emitting diode,” Appl. Phys. B 108(1), 25–29 (2012).
[CrossRef]

Wallraff, G. M.

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
[CrossRef]

Watanabe, M.

M. Watanabe, M. Herren, M. Morita, “Picosecond luminescence and excitation energy transfer in J- and H-aggregates of cyamine dyes on colloidal silica,” J. Lumin. 58(1–6), 198–201 (1994).
[CrossRef]

Yamamoto, N.

K. Akahane, N. Yamamoto, M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[CrossRef]

Yang, H. B.

C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angew. Chem. Int. Ed. Engl. 49(17), 3014–3017 (2010).
[CrossRef] [PubMed]

Yatsui, T.

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Fixed-distance coupling and encapsulation of heterogeneous quantum dots using phonon-assisted photo-curing,” Appl. Phys. B 110(1), 39–45 (2013).
[CrossRef]

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots,” Appl. Phys. B 110(3), 293–297 (2013).
[CrossRef]

N. Tate, M. Naruse, Y. Liu, T. Kawazoe, T. Yatsui, M. Ohtsu, “Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets,” Appl. Phys. B 112(4), 587–592 (2013).
[CrossRef]

S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, “Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process,” Appl. Phys. B 99(3), 415–422 (2010).
[CrossRef]

Yonezawa, Y.

Y. Yonezawa, H. Kurokawa, T. Sato, “Excitation energy transfer between J-aggregates of cyanine dyes in mixed monolayer assemblies,” J. Lumin. 54(5), 285–295 (1993).
[CrossRef]

Yukutake, S.

S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, “Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process,” Appl. Phys. B 99(3), 415–422 (2010).
[CrossRef]

Zhang, W.

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
[CrossRef]

Zhou, D.

A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angew. Chem. Int. Ed. Engl. 49(17), 3014–3017 (2010).
[CrossRef] [PubMed]

Appl. Phys. B

S. Yukutake, T. Kawazoe, T. Yatsui, W. Nomura, K. Kitamura, M. Ohtsu, “Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process,” Appl. Phys. B 99(3), 415–422 (2010).
[CrossRef]

H. Fujiwara, T. Kawazoe, M. Ohtsu, “Nonadiabatic multi-step excitation for the blue–green light emission from dye grains induced by the near-infrared optical near-field,” Appl. Phys. B 98(2–3), 283–289 (2010).
[CrossRef]

T. Kawazoe, M. A. Mueed, M. Ohtsu, “Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the phonon-assisted optical near-field process,” Appl. Phys. B 104(4), 747–754 (2011).
[CrossRef]

K. Kitamura, T. Kawazoe, M. Ohtsu, “Homojunction-structured ZnO light-emitting diodes fabricated by dressed-photon assisted annealing,” Appl. Phys. B 107(2), 293–299 (2012).
[CrossRef]

N. Wada, T. Kawazoe, M. Ohtsu, “An optical and electrical relaxation oscillator using a Si homojunction structured light emitting diode,” Appl. Phys. B 108(1), 25–29 (2012).
[CrossRef]

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Fixed-distance coupling and encapsulation of heterogeneous quantum dots using phonon-assisted photo-curing,” Appl. Phys. B 110(1), 39–45 (2013).
[CrossRef]

N. Tate, Y. Liu, T. Kawazoe, M. Naruse, T. Yatsui, M. Ohtsu, “Nanophotonic droplet: a nanometric optical device consisting of size- and number-selective coupled quantum dots,” Appl. Phys. B 110(3), 293–297 (2013).
[CrossRef]

N. Tate, M. Naruse, Y. Liu, T. Kawazoe, T. Yatsui, M. Ohtsu, “Experimental demonstration and stochastic modeling of autonomous formation of nanophotonic droplets,” Appl. Phys. B 112(4), 587–592 (2013).
[CrossRef]

Appl. Phys. Lett.

K. Akahane, N. Yamamoto, M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett. 93(4), 041121 (2008).
[CrossRef]

S. Tomić, T. S. Jones, N. M. Harrison, “Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design,” Appl. Phys. Lett. 93(26), 263105 (2008).
[CrossRef]

T. Kawazoe, K. Kobayashi, M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[CrossRef]

Chem. Mater.

S. A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, J. C. Scott, “Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission,” Chem. Mater. 15(12), 2305–2312 (2003).
[CrossRef]

Y.-L. Lee, B.-M. Huang, H.-T. Chien, “Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications,” Chem. Mater. 20(22), 6903–6905 (2008).
[CrossRef]

J. Appl. Phys.

A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” J. Appl. Phys. 96(1), 903–909 (2004).
[CrossRef]

J. Lightwave Technol.

J. Lumin.

Y. Yonezawa, H. Kurokawa, T. Sato, “Excitation energy transfer between J-aggregates of cyanine dyes in mixed monolayer assemblies,” J. Lumin. 54(5), 285–295 (1993).
[CrossRef]

M. Watanabe, M. Herren, M. Morita, “Picosecond luminescence and excitation energy transfer in J- and H-aggregates of cyamine dyes on colloidal silica,” J. Lumin. 58(1–6), 198–201 (1994).
[CrossRef]

J. Sel. Top. Quantum Electron.

T. Kawazoe, H. Fujiwara, K. Kobayashi, M. Ohtsu, “Visible light emission from dye molecular grains via infrared excitation based on the nonadiabatic transition induced by the optical near field,” J. Sel. Top. Quantum Electron. 15(5), 1380–1386 (2009).
[CrossRef]

Nanotechnology

H. Song, S. Lee, “Red light emitting solid state hybrid quantum dot–near-UV GaN LED devices,” Nanotechnology 18(25), 255202 (2007).
[CrossRef]

Phys. Rev. Lett.

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Physica E

A. Takata, R. Oshima, Y. Shoji, K. Akahane, Y. Okada, “Growth of multi-stacked InAs/GaNAs quantum dots grown with As2 source in atomic hydrogen-assisted molecular beam epitaxy,” Physica E 42(10), 2745–2748 (2010).
[CrossRef]

Science

G. Springholz, V. Holy, M. Pinczolits, G. Bauer, “Self-organized growth of three- dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant,” Science 282(5389), 734–737 (1998).
[CrossRef] [PubMed]

Other

A. Yariv, “Second-harmonics generation and parametric oscillation,” in Introduction to Optical Electronics, 1st ed. (Holt, Rinehert and Winston, 1985), Chap. 8, pp. 177–221.

P. W. Atkins, “Spectroscopy2: Electronic transitions,” in Physical Chemistry, 6th ed. (Oxford University, 1998), Chap. 17, pp. 497–526.

M. Ohtsu, ed., Progress in Nano-Electro-Optics II (Springer-Verlag, 2004).

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, eds., Principles of Nanophotonics (Taylor and Francis, 2008).

M. Ohtsu, Dressed Photons (Springer-Verlag, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of process of forming a thermo-curable polymer-based ND via the phonon-assisted photo-curing process.

Fig. 2
Fig. 2

(a) Schematic diagram of enhanced emission from a CdSe-QD via optical energy transfer from a CdS-QD to the CdSe-QD, and (b) individual emissions from the CdSe-QD and the CdS-QD.

Fig. 3
Fig. 3

Microscope fluorescence image of densely formed NDs under UV light irradiation and (inset) a magnified view.

Fig. 4
Fig. 4

Appearance of w/-NDs sample (left) and w/o-NDs sample (right) under (a) room light and (b) the absorption spectra of w/-NDs sample (red line) and w/o-NDs sample (blue line). (c) Appearance of w/-NDs sample (left) and w/o-NDs sample (right) under UV light.

Fig. 5
Fig. 5

Comparison of excitation spectra of (a) w/-NDs sample and (b) w/o-NDs sample.

Fig. 6
Fig. 6

(a) Comparison of emission spectra with 325 nm light irradiation, measured with w/-NDs sample (red line) and w/o-NDs sample (blue line), respectively. (b) Description of differential optical amount, D, calculated from the results in (a).

Metrics