Abstract

We study unrepeatered transmission of 40x256 Gb/s systems with polarization-multiplexed 16-quadrature amplitude modulation (PM-16QAM) channels using simple coherent optical system configurations. Three systems are investigated with either a homogeneous fiber span, or simple two-segment hybrid fiber designs. Each system relies primarily on ultra-low loss, very large effective area fiber, while making use of only first-order backward pumped Raman amplification and no remote optically pumped amplifier (ROPA). For the longest span studied, we demonstrate unrepeatered 256 Gb/s transmission over 304 km with the additional aid of nonlinear compensation using digital backpropagation. We find an average performance improvement in terms of the Q-factor of 0.45 dB by using digital backpropagation compared to the case of using chromatic dispersion compensation alone for an unrepeatered span system.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Downie, J. Hurley, J. Cartledge, S. Ten, S. Bickham, S. Mishra, X. Zhu, and A. Kobyakov, “40 x 112 Gb/s transmission over an unrepeatered 365 km effective area-managed span comprised of ultra-low loss optical fibre,” in Proceedings of European Conf. Opt. Commun. (2010), paper We.7.C.5.
  2. D. Mongardien, P. Bousselet, O. Bertran-Pardo, P. Tran, and H. Bissessur, “2.6Tb/s (26 x 100Gb/s) unrepeatered transmission over 401km using PDM-QPSK with a coherent receiver,” in Proceedings of European Conf. Opt. Commun. (2009), paper 6.4.3.
  3. H. Bissessur, P. Bousselet, D. Mongardien, G. Boissy, and J. Lestrade, “4 x 100Gb/s unrepeatered transmission over 462km using coherent PDM-QPSK format and real-time processing,” in Proceedings of European Conf. Opt. Commun. (2011), paper Tu.3.B.3.
    [CrossRef]
  4. D. Chang, W. Pelouch, and J. McLaughlin, “8 x 120 Gb/s unrepeatered transmission over 444 km (76.6 dB) using distributed Raman amplification and ROPA without discrete amplification,” in Proceedings of European Conf. Opt. Commun. (2011), paper Tu.3.B.2.
    [CrossRef]
  5. S. Oda, T. Tanimura, Y. Cao, T. Hoshida, Y. Akiyama, H. Nakashima, C. Ohshima, K. Sone, Y. Aoki, M. Yan, Z. Tao, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “80x224 Gb/s unrepeated transmission over 240 km of large-Aeff pure silica core fibre without remote optical pre-amplifier,” in Proceedings of European Conf. Opt. Commun. (2011), paper Th.13.C.7.
    [CrossRef]
  6. D. Mongardien, C. Bastide, B. Lavigne, S. Etienne, and H. Bissessur, “401 km unrepeatered transmission of dual-carrier 400 Gb/s PDM-16QAM mixed with 100 Gb/s channels,” in Proceedings of European Conf. Opt. Commun. (2013), paper Tu.1.D.2.
    [CrossRef]
  7. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, D. W. Peckham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 29(4), 373–377 (2011).
    [CrossRef]
  8. F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
    [CrossRef]
  9. I. Fatadin, D. Ives, S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
    [CrossRef]
  10. T. Pfau, S. Hoffmann, R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [CrossRef]
  11. Y. Gao, A. P. T. Lau, C. Lu, Y. Dai, and X. Xu, “Blind cycle-slip detection and correction for coherent communication systems,” in Proceedings of European Conf. Opt. Commun. (2013), paper P.3.16.
  12. J. D. Downie, J. Hurley, D. Pikula, S. Ten, C. Towery, “Study of EDFA and Raman system transmission reach with 256 Gb/s PM-16QAM signals over three optical fibers with 100 km spans,” Opt. Express 21(14), 17372–17378 (2013).
    [CrossRef] [PubMed]
  13. E. Ip, J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [CrossRef]
  14. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
    [CrossRef]
  15. C. Behrens, R. I. Killey, S. J. Savory, M. Chen, P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
    [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  17. J. Rodrigues Fernandes de Oliveira, U. C. de Moura, G. E. Rodrigues de Paiva, A. Passos de Freitas, L. H. Hecker de Carvalho, V. E. Parahyba, J. C. Rodrigues Fernandes de Oliveira, M. Araujo Romero, “Hybrid EDFA/Raman amplification topology for repeaterless 4.48 Tb/s (40 x 112 Gb/s DP-QPSK) transmission over 302 Km of G.652 standard single mode fiber,” J. Lightwave Technol. 31(16), 2799–2808 (2013).
    [CrossRef]
  18. A. Puc, D. Chang, W. Pelouch, P. Perrier, D. Krishnappa, and S. Burtsev, “Novel design of very long, high capacity unrepeatered Raman links,” in Proceedings of European Conf. Opt. Commun. (2009), paper 6.4.2.

2013 (2)

2011 (2)

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[CrossRef]

A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, D. W. Peckham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 29(4), 373–377 (2011).
[CrossRef]

2010 (2)

F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
[CrossRef]

2009 (2)

2008 (1)

Araujo Romero, M.

Bayvel, P.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[CrossRef]

Behrens, C.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[CrossRef]

Chandrasekhar, S.

Chang, F.

F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

Chen, M.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[CrossRef]

de Moura, U. C.

Downie, J. D.

Fatadin, I.

Gnauck, A. H.

Hecker de Carvalho, L. H.

Hoffmann, S.

Hurley, J.

Ip, E.

Ives, D.

Kahn, J. M.

Killey, R. I.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[CrossRef]

Liu, X.

Mizuochi, T.

F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

Noe, R.

Onohara, K.

F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

Parahyba, V. E.

Passos de Freitas, A.

Peckham, D. W.

Pfau, T.

Pikula, D.

Rodrigues de Paiva, G. E.

Rodrigues Fernandes de Oliveira, J.

Rodrigues Fernandes de Oliveira, J. C.

Savory, S. J.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[CrossRef]

I. Fatadin, D. Ives, S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[CrossRef]

Ten, S.

Towery, C.

Winzer, P. J.

Zhu, B.

IEEE Commun. Mag. (1)

F. Chang, K. Onohara, T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, P. Bayvel, “Nonlinear transmission performance of higher-order modulation formats,” IEEE Photon. Technol. Lett. 23(6), 377–379 (2011).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Express (1)

Other (9)

A. Puc, D. Chang, W. Pelouch, P. Perrier, D. Krishnappa, and S. Burtsev, “Novel design of very long, high capacity unrepeatered Raman links,” in Proceedings of European Conf. Opt. Commun. (2009), paper 6.4.2.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Y. Gao, A. P. T. Lau, C. Lu, Y. Dai, and X. Xu, “Blind cycle-slip detection and correction for coherent communication systems,” in Proceedings of European Conf. Opt. Commun. (2013), paper P.3.16.

J. D. Downie, J. Hurley, J. Cartledge, S. Ten, S. Bickham, S. Mishra, X. Zhu, and A. Kobyakov, “40 x 112 Gb/s transmission over an unrepeatered 365 km effective area-managed span comprised of ultra-low loss optical fibre,” in Proceedings of European Conf. Opt. Commun. (2010), paper We.7.C.5.

D. Mongardien, P. Bousselet, O. Bertran-Pardo, P. Tran, and H. Bissessur, “2.6Tb/s (26 x 100Gb/s) unrepeatered transmission over 401km using PDM-QPSK with a coherent receiver,” in Proceedings of European Conf. Opt. Commun. (2009), paper 6.4.3.

H. Bissessur, P. Bousselet, D. Mongardien, G. Boissy, and J. Lestrade, “4 x 100Gb/s unrepeatered transmission over 462km using coherent PDM-QPSK format and real-time processing,” in Proceedings of European Conf. Opt. Commun. (2011), paper Tu.3.B.3.
[CrossRef]

D. Chang, W. Pelouch, and J. McLaughlin, “8 x 120 Gb/s unrepeatered transmission over 444 km (76.6 dB) using distributed Raman amplification and ROPA without discrete amplification,” in Proceedings of European Conf. Opt. Commun. (2011), paper Tu.3.B.2.
[CrossRef]

S. Oda, T. Tanimura, Y. Cao, T. Hoshida, Y. Akiyama, H. Nakashima, C. Ohshima, K. Sone, Y. Aoki, M. Yan, Z. Tao, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “80x224 Gb/s unrepeated transmission over 240 km of large-Aeff pure silica core fibre without remote optical pre-amplifier,” in Proceedings of European Conf. Opt. Commun. (2011), paper Th.13.C.7.
[CrossRef]

D. Mongardien, C. Bastide, B. Lavigne, S. Etienne, and H. Bissessur, “401 km unrepeatered transmission of dual-carrier 400 Gb/s PDM-16QAM mixed with 100 Gb/s channels,” in Proceedings of European Conf. Opt. Commun. (2013), paper Tu.1.D.2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental system set-up. PS: polarization scrambler, PBC: polarization beam combiner, PC: polarization controller, OSA: optical spectrum analyzer, PAM: pulse amplitude modulation, Rx: receiver.

Fig. 2
Fig. 2

(a) 20log(Q) as function of Raman ON/OFF gain for 286 km and 292 km systems. (b) Effective hybrid Raman/EDFA amplifier noise figure as function of Raman ON/OFF gain.

Fig. 3
Fig. 3

OSNR and Q-factor values of all 40 channels for two 256 Gb/s unrepeatered span systems.

Fig. 4
Fig. 4

304 km span transmission: (a) Q-factor vs. channel power for a center channel. (b) Q improvement ΔQ as a function of number of steps in DBP algorithm for a central channel.

Fig. 5
Fig. 5

Q-factor values and ΔQ produced by DBP algorithm for all 40 channels in 304 km span transmission system.

Metrics