Abstract

We demonstrated a high power Yb-Raman combined nonlinear fiber amplifier. The seed is a 30 W dual-wavelength Yb-doped fiber laser formed by 1070 nm and 1120 nm lasers. The gain medium in the amplifier stage is a 45-meters-long Yb-doped fiber, which power scaled the 1070 nm laser and Raman amplified the 1120 nm laser simultaneously. A record 1120 nm power of 732 W is obtained with pump power of 890 W. Numerical study taking into account of both Yb and Raman gain has been conducted to analyze the output characters and power evolution in the amplifier under different conditions. The numerical results are in good agreement with the experiment. This amplifier is also suitable to amplify laser in the wavelength range of 1100-1150 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Troppe, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
    [CrossRef]
  2. V. R. Supradeepa, J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett. 38(14), 2538–2541 (2013).
    [CrossRef] [PubMed]
  3. H. Zhang, H. Xiao, P. Zhou, X. Wang, X. Xu, “High-power 1120-nm Yb-doped fiber laser and amplifier,” IEEE Photon. Technol. Lett. 25(21), 2093–2096 (2013).
    [CrossRef]
  4. J. Wang, J. Hu, L. Zhang, X. Gu, J. Chen, Y. Feng, “A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm,” Opt. Express 20(27), 28373–28378 (2012).
    [CrossRef] [PubMed]
  5. J. Li, D. D. Hudson, S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
    [CrossRef] [PubMed]
  6. W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
    [CrossRef] [PubMed]
  7. A. S. Kurkov, V. V. Dvoyrin, A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 microm,” Opt. Lett. 35(4), 490–492 (2010).
    [CrossRef] [PubMed]
  8. J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, J. Nilsson, “Analysis of the conversion to the first stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
    [CrossRef]
  9. Y. Feng, L. R. Taylor, D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
    [CrossRef] [PubMed]
  10. L. Zhang, H. Jiang, S. Cui, Y. Feng, “Integrated Ytterbium-Raman fiber amplifier,” Opt. Lett. 39(7), 1933–1936 (2014).
    [CrossRef] [PubMed]
  11. E. E. Rowen, G. Vashdi, J. Lasri, E. Inbar, “A combined Yb-Raman fiber amplifier for generating narrow linewidth high-power pulses in the 1100-1200 nm wavelength range and efficient nonlinear conversion into Yellow,” Proc. SPIE 8601, 86011J (2013).
    [CrossRef]
  12. A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, “Ytterbium fiber laser emitting at 1160 nm,” Laser Phys. Lett. 3(10), 503–506 (2006).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  14. J. P. Fève, “Phase-matching and mitigation of four-wave mixing in fibers with positive gain,” Opt. Express 15(2), 577–582 (2007).
    [CrossRef] [PubMed]
  15. J. P. Fève, P. E. Schrader, R. L. Farrow, D. A. V. Kliner, “Four-wave mixing in nanosecond pulsed fiber amplifiers,” Opt. Express 15(8), 4647–4662 (2007).
    [CrossRef] [PubMed]
  16. S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett. 37(13), 2508–2510 (2012).
    [CrossRef] [PubMed]
  17. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
    [CrossRef] [PubMed]

2014 (1)

2013 (3)

E. E. Rowen, G. Vashdi, J. Lasri, E. Inbar, “A combined Yb-Raman fiber amplifier for generating narrow linewidth high-power pulses in the 1100-1200 nm wavelength range and efficient nonlinear conversion into Yellow,” Proc. SPIE 8601, 86011J (2013).
[CrossRef]

V. R. Supradeepa, J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett. 38(14), 2538–2541 (2013).
[CrossRef] [PubMed]

H. Zhang, H. Xiao, P. Zhou, X. Wang, X. Xu, “High-power 1120-nm Yb-doped fiber laser and amplifier,” IEEE Photon. Technol. Lett. 25(21), 2093–2096 (2013).
[CrossRef]

2012 (2)

2011 (1)

2010 (1)

2009 (2)

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, J. Nilsson, “Analysis of the conversion to the first stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[CrossRef]

Y. Feng, L. R. Taylor, D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

2006 (1)

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, “Ytterbium fiber laser emitting at 1160 nm,” Laser Phys. Lett. 3(10), 503–506 (2006).
[CrossRef]

2005 (1)

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[CrossRef] [PubMed]

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Troppe, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Babin, S. A.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Troppe, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Calia, D. B.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Troppe, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Chen, J.

Churkin, D. V.

Codemard, C. A.

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, J. Nilsson, “Analysis of the conversion to the first stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[CrossRef]

Cui, S.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Troppe, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Dvoyrin, V. V.

Farrow, R. L.

Feng, Y.

Fève, J. P.

Gu, X.

Haas, F.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[CrossRef] [PubMed]

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Troppe, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Hawley, R.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[CrossRef] [PubMed]

Hawley, T.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[CrossRef] [PubMed]

Hu, J.

Hubert, C.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[CrossRef] [PubMed]

Hudson, D. D.

Ibsen, M.

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, J. Nilsson, “Analysis of the conversion to the first stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[CrossRef]

Inbar, E.

E. E. Rowen, G. Vashdi, J. Lasri, E. Inbar, “A combined Yb-Raman fiber amplifier for generating narrow linewidth high-power pulses in the 1100-1200 nm wavelength range and efficient nonlinear conversion into Yellow,” Proc. SPIE 8601, 86011J (2013).
[CrossRef]

Ismagulov, A. E.

Jackson, S. D.

Ji, J.

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, J. Nilsson, “Analysis of the conversion to the first stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[CrossRef]

Jiang, H.

Kablukov, S. I.

Kliner, D. A. V.

Komoriya, A.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[CrossRef] [PubMed]

Kurkov, A. S.

A. S. Kurkov, V. V. Dvoyrin, A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 microm,” Opt. Lett. 35(4), 490–492 (2010).
[CrossRef] [PubMed]

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, “Ytterbium fiber laser emitting at 1160 nm,” Laser Phys. Lett. 3(10), 503–506 (2006).
[CrossRef]

Lasri, J.

E. E. Rowen, G. Vashdi, J. Lasri, E. Inbar, “A combined Yb-Raman fiber amplifier for generating narrow linewidth high-power pulses in the 1100-1200 nm wavelength range and efficient nonlinear conversion into Yellow,” Proc. SPIE 8601, 86011J (2013).
[CrossRef]

Li, J.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Troppe, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Marakulin, A. V.

Medvedkov, O. I.

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, “Ytterbium fiber laser emitting at 1160 nm,” Laser Phys. Lett. 3(10), 503–506 (2006).
[CrossRef]

Murga, M.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[CrossRef] [PubMed]

Nicholson, J. W.

Nilsson, J.

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, J. Nilsson, “Analysis of the conversion to the first stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[CrossRef]

Packard, B.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[CrossRef] [PubMed]

Paramonov, V. M.

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, “Ytterbium fiber laser emitting at 1160 nm,” Laser Phys. Lett. 3(10), 503–506 (2006).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Troppe, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Podivilov, E. V.

Rowen, E. E.

E. E. Rowen, G. Vashdi, J. Lasri, E. Inbar, “A combined Yb-Raman fiber amplifier for generating narrow linewidth high-power pulses in the 1100-1200 nm wavelength range and efficient nonlinear conversion into Yellow,” Proc. SPIE 8601, 86011J (2013).
[CrossRef]

Sahu, J. K.

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, J. Nilsson, “Analysis of the conversion to the first stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[CrossRef]

Schrader, P. E.

Supradeepa, V. R.

Taylor, L. R.

Telford, W.

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[CrossRef] [PubMed]

Troppe, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Troppe, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Vashdi, G.

E. E. Rowen, G. Vashdi, J. Lasri, E. Inbar, “A combined Yb-Raman fiber amplifier for generating narrow linewidth high-power pulses in the 1100-1200 nm wavelength range and efficient nonlinear conversion into Yellow,” Proc. SPIE 8601, 86011J (2013).
[CrossRef]

Wang, J.

Wang, X.

H. Zhang, H. Xiao, P. Zhou, X. Wang, X. Xu, “High-power 1120-nm Yb-doped fiber laser and amplifier,” IEEE Photon. Technol. Lett. 25(21), 2093–2096 (2013).
[CrossRef]

Xiao, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, X. Xu, “High-power 1120-nm Yb-doped fiber laser and amplifier,” IEEE Photon. Technol. Lett. 25(21), 2093–2096 (2013).
[CrossRef]

Xu, X.

H. Zhang, H. Xiao, P. Zhou, X. Wang, X. Xu, “High-power 1120-nm Yb-doped fiber laser and amplifier,” IEEE Photon. Technol. Lett. 25(21), 2093–2096 (2013).
[CrossRef]

Zhang, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, X. Xu, “High-power 1120-nm Yb-doped fiber laser and amplifier,” IEEE Photon. Technol. Lett. 25(21), 2093–2096 (2013).
[CrossRef]

Zhang, L.

Zhou, P.

H. Zhang, H. Xiao, P. Zhou, X. Wang, X. Xu, “High-power 1120-nm Yb-doped fiber laser and amplifier,” IEEE Photon. Technol. Lett. 25(21), 2093–2096 (2013).
[CrossRef]

Zlobina, E. A.

Cytometry A (1)

W. Telford, M. Murga, T. Hawley, R. Hawley, B. Packard, A. Komoriya, F. Haas, C. Hubert, “DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry,” Cytometry A 68(1), 36–44 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Troppe, C. J. Mackechnie, P. R. Barber, J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

J. Ji, C. A. Codemard, M. Ibsen, J. K. Sahu, J. Nilsson, “Analysis of the conversion to the first stokes in cladding-pumped fiber Raman amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 129–139 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Zhang, H. Xiao, P. Zhou, X. Wang, X. Xu, “High-power 1120-nm Yb-doped fiber laser and amplifier,” IEEE Photon. Technol. Lett. 25(21), 2093–2096 (2013).
[CrossRef]

Laser Phys. Lett. (1)

A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov, “Ytterbium fiber laser emitting at 1160 nm,” Laser Phys. Lett. 3(10), 503–506 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Proc. SPIE (1)

E. E. Rowen, G. Vashdi, J. Lasri, E. Inbar, “A combined Yb-Raman fiber amplifier for generating narrow linewidth high-power pulses in the 1100-1200 nm wavelength range and efficient nonlinear conversion into Yellow,” Proc. SPIE 8601, 86011J (2013).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The experimental setup of the amplifier.

Fig. 2
Fig. 2

The calculated power distributions of pump, 1070 nm and 1120 nm laser along the fiber.

Fig. 3
Fig. 3

The 1120 nm laser power and total output power as a function of pump power.

Fig. 4
Fig. 4

The power evolutions in different fiber combination cases (a) 20 m YDF followed by 26.5 m passive fiber; (b) 20 m YDF followed by 50 m passive fiber.

Fig. 5
Fig. 5

The power evolutions along the fiber in the case of no Raman effect, i.e. gR = 0.

Fig. 6
Fig. 6

The calculated 1120 nm output power as a function of 1120 nm power ratio in the seed.

Fig. 7
Fig. 7

The measured total power and 1120 nm power in the output.

Fig. 8
Fig. 8

The output spectrums at different pump power.

Fig. 9
Fig. 9

The measured 1120 nm power ratio in the output changes with pump power at the same seed power (30 W) with different 1120 nm power ratio.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N 2 (z)=N( z ) si P si ± (z) σ a ( λ si ) Γ si h ν si A + k P ± (z, λ k ) σ a ( λ k ) Γ k h ν k A si P si ± (z)[ σ a ( λ si )+ σ e ( λ si )] Γ si h ν si A + 1 τ + k P ± (z, λ k )[ σ a ( λ k )+ σ e ( λ k )] Γ k h ν k A
± d P k ± (z) dz = Γ k {[ σ a ( λ k )+ σ e ( λ k )] N 2 (z) σ a ( λ k )N(z)} P k ± (z) α( λ p ) P k ± (z)+2 Γ k σ e ( λ k ) N 2 (z) h c 2 λ k 3 Δλ
± d P s1 ± (z) dz = Γ s1 {[ σ a ( λ s1 )+ σ e ( λ s1 )] N 2 (z) σ a ( λ s1 )N( z )} P s1 ± (z) α( λ p ) P s1 ± (z)+2 Γ s1 σ e ( λ s1 ) N 2 (z) h c 2 λ s1 3 Δλ g R A Γ s1 λ s2 λ s1 P s1 ± ( P s2 + + P s2 )
± d P s2 ± (z) dz = Γ s2 {[ σ a ( λ s2 )+ σ e ( λ s2 )] N 2 (z) σ a ( λ s2 )N( z )} P s2 ± (z) α( λ p ) P s2 ± (z)+2 Γ s2 σ e ( λ s2 ) N 2 (z) h c 2 λ s2 3 Δλ+ g R A Γ s2 P s2 ± ( P s1 + + P s1 )

Metrics