T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using Laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).

[Crossref]
[PubMed]

B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).

[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).

[Crossref]

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).

[Crossref]
[PubMed]

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).

[Crossref]

C. X. Ma and X. G. Shao, “Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra,” J. Chem. Inf. Comput. Sci. 44(3), 907–911 (2004).

[Crossref]
[PubMed]

D. Chen, X. G. Shao, B. Hu, and Q. D. Su, “A background and noise elimination method for quantitative calibration of near infrared spectra,” Anal. Chim. Acta 511(1), 37–45 (2004).

[Crossref]

X. G. Ma and Z. X. Zhang, “Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry,” Anal. Chim. Acta 485(2), 233–239 (2003).

[Crossref]

X. G. Shao, A. K. M. Leung, and F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003).

[Crossref]
[PubMed]

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429(2), 269–278 (2001).

[Crossref]

X. G. Shao, W. S. Cai, and Z. X. Pan, “Wavelet transform and its applications in high performance liquid chromatography (HPLC) analysis,” Chemom. Intell. Lab. Syst. 45(1–2), 249–256 (1999).

[Crossref]

X. G. Shao, L. M. Shao, and G. W. Zhao, “Extraction of extended X-ray absorption fine structure information from the experimental data using the wavelet transform,” Anal. Commun. 35(4), 135–137 (1998).

[Crossref]

L. Dudragne, P. Adam, and J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52(10), 1321–1327 (1998).

[Crossref]

S. G. Mallat, “A theory of multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. 11(7), 674–693 (1989).

[Crossref]

X. G. Shao, W. S. Cai, and Z. X. Pan, “Wavelet transform and its applications in high performance liquid chromatography (HPLC) analysis,” Chemom. Intell. Lab. Syst. 45(1–2), 249–256 (1999).

[Crossref]

X. G. Shao, A. K. M. Leung, and F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003).

[Crossref]
[PubMed]

D. Chen, X. G. Shao, B. Hu, and Q. D. Su, “A background and noise elimination method for quantitative calibration of near infrared spectra,” Anal. Chim. Acta 511(1), 37–45 (2004).

[Crossref]

B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).

[Crossref]

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429(2), 269–278 (2001).

[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).

[Crossref]
[PubMed]

D. Chen, X. G. Shao, B. Hu, and Q. D. Su, “A background and noise elimination method for quantitative calibration of near infrared spectra,” Anal. Chim. Acta 511(1), 37–45 (2004).

[Crossref]

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).

[Crossref]
[PubMed]

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).

[Crossref]

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).

[Crossref]

X. G. Shao, A. K. M. Leung, and F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003).

[Crossref]
[PubMed]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using Laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).

[Crossref]
[PubMed]

Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).

[Crossref]

T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using Laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).

[Crossref]
[PubMed]

Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).

[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

C. X. Ma and X. G. Shao, “Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra,” J. Chem. Inf. Comput. Sci. 44(3), 907–911 (2004).

[Crossref]
[PubMed]

X. G. Ma and Z. X. Zhang, “Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry,” Anal. Chim. Acta 485(2), 233–239 (2003).

[Crossref]

S. G. Mallat, “A theory of multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. 11(7), 674–693 (1989).

[Crossref]

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429(2), 269–278 (2001).

[Crossref]

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).

[Crossref]
[PubMed]

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429(2), 269–278 (2001).

[Crossref]

T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using Laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).

[Crossref]
[PubMed]

X. G. Shao, W. S. Cai, and Z. X. Pan, “Wavelet transform and its applications in high performance liquid chromatography (HPLC) analysis,” Chemom. Intell. Lab. Syst. 45(1–2), 249–256 (1999).

[Crossref]

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).

[Crossref]
[PubMed]

X. G. Shao, L. M. Shao, and G. W. Zhao, “Extraction of extended X-ray absorption fine structure information from the experimental data using the wavelet transform,” Anal. Commun. 35(4), 135–137 (1998).

[Crossref]

C. X. Ma and X. G. Shao, “Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra,” J. Chem. Inf. Comput. Sci. 44(3), 907–911 (2004).

[Crossref]
[PubMed]

D. Chen, X. G. Shao, B. Hu, and Q. D. Su, “A background and noise elimination method for quantitative calibration of near infrared spectra,” Anal. Chim. Acta 511(1), 37–45 (2004).

[Crossref]

X. G. Shao, A. K. M. Leung, and F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003).

[Crossref]
[PubMed]

X. G. Shao, W. S. Cai, and Z. X. Pan, “Wavelet transform and its applications in high performance liquid chromatography (HPLC) analysis,” Chemom. Intell. Lab. Syst. 45(1–2), 249–256 (1999).

[Crossref]

X. G. Shao, L. M. Shao, and G. W. Zhao, “Extraction of extended X-ray absorption fine structure information from the experimental data using the wavelet transform,” Anal. Commun. 35(4), 135–137 (1998).

[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).

[Crossref]

D. Chen, X. G. Shao, B. Hu, and Q. D. Su, “A background and noise elimination method for quantitative calibration of near infrared spectra,” Anal. Chim. Acta 511(1), 37–45 (2004).

[Crossref]

B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).

[Crossref]

L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 64(3), 278–287 (2009).

[Crossref]

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429(2), 269–278 (2001).

[Crossref]

T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using Laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).

[Crossref]
[PubMed]

Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).

[Crossref]

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).

[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).

[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).

[Crossref]

L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 64(3), 278–287 (2009).

[Crossref]

T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using Laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).

[Crossref]
[PubMed]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).

[Crossref]

X. G. Ma and Z. X. Zhang, “Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry,” Anal. Chim. Acta 485(2), 233–239 (2003).

[Crossref]

X. G. Shao, L. M. Shao, and G. W. Zhao, “Extraction of extended X-ray absorption fine structure information from the experimental data using the wavelet transform,” Anal. Commun. 35(4), 135–137 (1998).

[Crossref]

X. G. Shao, A. K. M. Leung, and F. T. Chau, “Wavelet: a new trend in chemistry,” Acc. Chem. Res. 36(4), 276–283 (2003).

[Crossref]
[PubMed]

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429(2), 269–278 (2001).

[Crossref]

X. G. Ma and Z. X. Zhang, “Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry,” Anal. Chim. Acta 485(2), 233–239 (2003).

[Crossref]

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).

[Crossref]
[PubMed]

T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, “A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using Laser-induced breakdown spectroscopy,” Anal. Chim. Acta 807, 29–35 (2014).

[Crossref]
[PubMed]

D. Chen, X. G. Shao, B. Hu, and Q. D. Su, “A background and noise elimination method for quantitative calibration of near infrared spectra,” Anal. Chim. Acta 511(1), 37–45 (2004).

[Crossref]

X. G. Shao, L. M. Shao, and G. W. Zhao, “Extraction of extended X-ray absorption fine structure information from the experimental data using the wavelet transform,” Anal. Commun. 35(4), 135–137 (1998).

[Crossref]

L. Dudragne, P. Adam, and J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52(10), 1321–1327 (1998).

[Crossref]

C. M. Galloway, E. C. Le Ru, and P. G. Etchegoin, “An iterative algorithm for background removal in spectroscopy by wavelet transforms,” Appl. Spectrosc. 63(12), 1370–1376 (2009).

[Crossref]
[PubMed]

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004).

[Crossref]

X. G. Shao, W. S. Cai, and Z. X. Pan, “Wavelet transform and its applications in high performance liquid chromatography (HPLC) analysis,” Chemom. Intell. Lab. Syst. 45(1–2), 249–256 (1999).

[Crossref]

S. G. Mallat, “A theory of multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. 11(7), 674–693 (1989).

[Crossref]

B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, “Wavelet denoising method for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 28(12), 1884–1893 (2013).

[Crossref]

C. X. Ma and X. G. Shao, “Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra,” J. Chem. Inf. Comput. Sci. 44(3), 907–911 (2004).

[Crossref]
[PubMed]

Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012).

[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).

[Crossref]
[PubMed]

L. X. Sun and H. B. Yu, “Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 64(3), 278–287 (2009).

[Crossref]

I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, 1992).

A. E. Kramida Y. Ralchenko, J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (version 5.1)” (National Institute of Standards and Technology, 2013), http://physics.nist.gov/asd .

T. Fujimoto, Plasma Spectroscopy (Clarendon, 2004).

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. (2014).

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Science, 2007).

S. G. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (Academic, 2008).