Abstract

In this paper we investigate reducing threshold and improving the efficiency and speed of distributed feedback hybrid silicon lasers. A low threshold current of 8.8 mA was achieved for a 200 μm cavity at 20 °C. A 3 dB bandwidth of 9.5 GHz as well as 12.5 Gb/s direct modulation of DFB laser diode was achieved on the hybrid silicon platform for the first time.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  2. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
    [CrossRef]
  3. A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “Distributed feedback silicon evanescent laser,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP15.
  4. D. Liang, M. Fiorentino, T. Okumura, H.-H. Chang, D. T. Spencer, Y.-H. Kuo, A. W. Fang, D. Dai, R. G. Beausoleil, J. E. Bowers, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Express 17(22), 20355–20364 (2009).
    [CrossRef] [PubMed]
  5. S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, G. Roelkens, “Heterogeneously integrated III-V/silicon distributed feedback lasers,” Opt. Lett. 38(24), 5434–5437 (2013).
    [CrossRef] [PubMed]
  6. S. R. Jain, Y. Tang, H.-W. Chen, M. N. Sysak, J. E. Bowers, “Integrated hybrid silicon transmitters,” J. Lightwave Technol. 30(5), 671–678 (2012).
    [CrossRef]
  7. K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19(19), 1436–1438 (2007).
    [CrossRef]
  8. W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
    [CrossRef]
  9. D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
    [CrossRef]
  10. G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5(2), 6600410 (2013).
    [CrossRef]
  11. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley-Interscience, 2012).
  12. K. Utaka, S. Akiba, K. Sakai, Y. Matsushima, “λ/4 shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 22(7), 1042–1051 (1986).
    [CrossRef]
  13. S. Srinivasan, A. W. Fang, D. Liang, J. D. Peters, B. Kaye, J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19(10), 9255–9261 (2011).
    [CrossRef] [PubMed]
  14. M. Yamada, K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26(16), 3474–3478 (1987).
    [CrossRef] [PubMed]

2013 (4)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[CrossRef]

S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, G. Roelkens, “Heterogeneously integrated III-V/silicon distributed feedback lasers,” Opt. Lett. 38(24), 5434–5437 (2013).
[CrossRef] [PubMed]

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5(2), 6600410 (2013).
[CrossRef]

2012 (1)

2011 (1)

2009 (1)

2008 (1)

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[CrossRef]

2007 (1)

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19(19), 1436–1438 (2007).
[CrossRef]

2006 (1)

1987 (1)

1986 (1)

K. Utaka, S. Akiba, K. Sakai, Y. Matsushima, “λ/4 shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 22(7), 1042–1051 (1986).
[CrossRef]

Akiba, S.

K. Utaka, S. Akiba, K. Sakai, Y. Matsushima, “λ/4 shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 22(7), 1042–1051 (1986).
[CrossRef]

Aoki, M.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19(19), 1436–1438 (2007).
[CrossRef]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[CrossRef]

Beausoleil, R. G.

Bolk, J.

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[CrossRef]

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5(2), 6600410 (2013).
[CrossRef]

S. R. Jain, Y. Tang, H.-W. Chen, M. N. Sysak, J. E. Bowers, “Integrated hybrid silicon transmitters,” J. Lightwave Technol. 30(5), 671–678 (2012).
[CrossRef]

S. Srinivasan, A. W. Fang, D. Liang, J. D. Peters, B. Kaye, J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19(10), 9255–9261 (2011).
[CrossRef] [PubMed]

D. Liang, M. Fiorentino, T. Okumura, H.-H. Chang, D. T. Spencer, Y.-H. Kuo, A. W. Fang, D. Dai, R. G. Beausoleil, J. E. Bowers, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Express 17(22), 20355–20364 (2009).
[CrossRef] [PubMed]

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Chang, H.-H.

Chen, H.-W.

Cohen, O.

Dai, D.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[CrossRef]

De Vries, T.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[CrossRef]

Duan, G.-H.

Fang, A. W.

Fedeli, J. M.

Fiorentino, M.

Fujisawa, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Geluk, E. J.

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[CrossRef]

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5(2), 6600410 (2013).
[CrossRef]

Ito, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[CrossRef]

Jain, S. R.

Jones, R.

Kaye, B.

Keyvaninia, S.

Kikawa, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19(19), 1436–1438 (2007).
[CrossRef]

Kitatani, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19(19), 1436–1438 (2007).
[CrossRef]

Kobayashi, W.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Kohtoku, M.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Kuo, Y.-H.

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[CrossRef]

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5(2), 6600410 (2013).
[CrossRef]

Kurosaki, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Lelarge, F.

Liang, D.

Matsushima, Y.

K. Utaka, S. Akiba, K. Sakai, Y. Matsushima, “λ/4 shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 22(7), 1042–1051 (1986).
[CrossRef]

Messaoudene, S.

Morthier, G.

Mukaikubo, M.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19(19), 1436–1438 (2007).
[CrossRef]

Nakahara, K.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19(19), 1436–1438 (2007).
[CrossRef]

Oakley, D. C.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[CrossRef]

Okumura, T.

Paniccia, M. J.

Park, H.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Peters, J. D.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5(2), 6600410 (2013).
[CrossRef]

S. Srinivasan, A. W. Fang, D. Liang, J. D. Peters, B. Kaye, J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19(10), 9255–9261 (2011).
[CrossRef] [PubMed]

Pintus, P.

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5(2), 6600410 (2013).
[CrossRef]

Reynolds, T. E.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[CrossRef]

Roelkens, G.

Sakai, K.

K. Utaka, S. Akiba, K. Sakai, Y. Matsushima, “λ/4 shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 22(7), 1042–1051 (1986).
[CrossRef]

Sakuda, K.

Sanjoh, H.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Shibata, Y.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Shinoda, K.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19(19), 1436–1438 (2007).
[CrossRef]

Smalbrugge, B.

Smit, M.

Spencer, D. T.

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[CrossRef]

S. Srinivasan, A. W. Fang, D. Liang, J. D. Peters, B. Kaye, J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19(10), 9255–9261 (2011).
[CrossRef] [PubMed]

Sysak, M. N.

Tadokoro, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[CrossRef]

S. R. Jain, Y. Tang, H.-W. Chen, M. N. Sysak, J. E. Bowers, “Integrated hybrid silicon transmitters,” J. Lightwave Technol. 30(5), 671–678 (2012).
[CrossRef]

Taniguchi, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19(19), 1436–1438 (2007).
[CrossRef]

Tsuchiya, T.

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19(19), 1436–1438 (2007).
[CrossRef]

Utaka, K.

K. Utaka, S. Akiba, K. Sakai, Y. Matsushima, “λ/4 shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 22(7), 1042–1051 (1986).
[CrossRef]

Van Landschoot, L.

Van Thourhout, D.

Verstuyft, S.

Warner, K.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[CrossRef]

Yamada, M.

Yamanaka, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

K. Utaka, S. Akiba, K. Sakai, Y. Matsushima, “λ/4 shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron. 22(7), 1042–1051 (1986).
[CrossRef]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[CrossRef]

IEEE Photon. J. (1)

G. Kurczveil, P. Pintus, M. J. R. Heck, J. D. Peters, J. E. Bowers, “Characterization of insertion loss and back reflection in passive hybrid silicon tapers,” IEEE Photon. J. 5(2), 6600410 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19(19), 1436–1438 (2007).
[CrossRef]

J. Electron. Mater. (1)

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for III–V compound semiconductors-to-silicon photonic integrated circuits,” J. Electron. Mater. 37(10), 1552–1559 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (1)

Other (2)

A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “Distributed feedback silicon evanescent laser,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP15.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley-Interscience, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of (a) a hybrid DFB laser; (b) a microscope image of the laser chip after fabrication; (c) a schematic lateral view with a grating on the waveguide; (d) SEM image of a first order grating with a λ/4 phase shift.

Fig. 2
Fig. 2

Relationship between threshold modal gain and threshold wavelength for cavity modes with (a) constant quarter wavelength phased shifted section with varying κ or (b) constant κ = 1000 cm-1 with varying Lp to get a κLg = 1,2,3,4. The blue circles and green diamond curve in (b) represent total cavity length of 100 μm and 200 μm, respectively. Lg is the length of grating section.

Fig. 3
Fig. 3

(a) L-I and I-V curves of 200 μm (solid line) and 100 μm (dash line) hybrid DFB lasers with quarter phase-shifted section and (b) the corresponding lasing spectrum at 20mA injection current; The insert in (a) is the central wavelength shift with injection current.

Fig. 4
Fig. 4

(a) The threshold current and (b) wall plug efficiency with 1mW output for the 100 μm and 200 μm DFB lasers with long phase-shifted section. The dash curves are simulated results. The optical spectrum of (c) 100 μm cavity with κLg = 4 and (d) 200 μm cavity with κLg = 4 at 30 mA injection current.

Fig. 5
Fig. 5

(a) The ratio of lasing wavelength shift with the change of stage temperature at CW lasing condition and (b) the ratio of lasing wavelength shift with the input electrical power of the laser.

Fig. 6
Fig. 6

(a) Small signal response of 200 μm hybrid DFB laser with quarter wavelength phase shifted section at different driving currents; the dependence of relaxation oscillation frequency on the driving current of (b) 200 μm and (c) 100 μm hybrid DFB laser.

Fig. 7
Fig. 7

Eye diagram of (a) diving voltage signal and the digital modulation of 200 μm DFB with the bit rate of (b) 5 Gbps (c) 10 Gbps and (d) 12.5 Gbps.

Tables (1)

Tables Icon

Table 1 Epitaxial III-V Layer Structure

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ= λ 2 n ¯ eff
κ= 2Δ n ¯ eff λ sin(DC*π)

Metrics