Abstract

We report experimentally and theoretically on the significant exaltation of optical forces on microparticles when they are partially coated by metallic nanodots and shined with laser light within the surface plasmon resonance. Optical forces on both pure silica particles and silica-gold raspberries are characterized using an optical chromatography setup to measure the variations of the Stokes drag versus laser beam power. Results are compared to the Mie theory prediction for both pure dielectric particles and core-shell ones with a shell described as a continuous dielectric-metal composite of dielectric constant determined from the Maxwell-Garnett approach. The observed quantitative agreement demonstrates that radiation pressure forces are directly related to the metal concentration on the microparticle surface and that metallic nanodots increase the magnitude of optical forces compared to pure dielectric particles of the same overall size, even at very low metal concentration. Behaving as “micro-sized nanoparticles”, the benefit of microparticles coated with metallic nanodots is thus twofold: it significantly enhances optofluidic manipulation and motion at the microscale, and brings nanometric optical, chemical or biological capabilities to the microscale.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [CrossRef] [PubMed]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  3. A. Jonás, P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
    [CrossRef] [PubMed]
  4. A. A. Lall, A. Terray, S. J. Hart, “On-the-fly cross flow laser guided separation of aerosol particles based on size, refractive index and density-theoretical analysis,” Opt. Express 18(26), 26775–26790 (2010).
    [CrossRef] [PubMed]
  5. S. J. Hart, A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
    [CrossRef]
  6. S. J. Hart, A. V. Terray, J. Arnold, “Particle separation and collection using an optical chromatographic filter,” Appl. Phys. Lett. 91(17), 171121 (2007).
    [CrossRef]
  7. T. Kaneta, Y. Ishidzu, N. Mishima, T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
    [CrossRef] [PubMed]
  8. R. W. Bowman, M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
    [CrossRef] [PubMed]
  9. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
    [CrossRef] [PubMed]
  10. M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
    [CrossRef] [PubMed]
  11. M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
    [CrossRef] [PubMed]
  12. A. S. Zelenina, R. Quidant, G. Badenes, M. Nieto-Vesperinas, “Tunable optical sorting and manipulation of nanoparticles via plasmon excitation,” Opt. Lett. 31(13), 2054–2056 (2006).
    [CrossRef] [PubMed]
  13. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  14. K. Svoboda, S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [CrossRef] [PubMed]
  15. M. J. Guffey, R. L. Miller, S. K. Gray, N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
    [CrossRef] [PubMed]
  16. J. R. Moffitt, Y. R. Chemla, S. B. Smith, C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
    [CrossRef] [PubMed]
  17. M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
    [CrossRef]
  18. H. Zhang, K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
    [CrossRef] [PubMed]
  19. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [CrossRef] [PubMed]
  20. A. Terray, J. D. Taylor, S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3(4), 044106 (2009).
    [CrossRef] [PubMed]
  21. J. S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
    [CrossRef]
  22. R. R. Agayan, T. Horvath, B. H. McNaughton, J. N. Anker, R. Kopelman, “Optical manipulation of metal-silica hybrid nanoparticles,” Proc. SPIE 5514, 502–513 (2004).
    [CrossRef]
  23. M. Rodriguez-Otazo, A. Augier-Calderin, J. P. Galaup, “Nanometer gold–silica composite particles manipulated by optical tweezers,” Opt. Commun. 282(14), 2921–2929 (2009).
    [CrossRef]
  24. I. Choi, H. D. Song, S. Lee, Y. I. Yang, T. Kang, J. Yi, “Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” J. Am. Chem. Soc. 134(29), 12083–12090 (2012).
    [CrossRef] [PubMed]
  25. S. Balint, M. P. Kreuzer, S. Rao, G. Badenes, P. Miskovsky, D. Petrov, “Simple route for preparing optically trappable probes for surface-enhanced Raman scattering,” J. Phys. Chem. C 113(41), 17724–17729 (2009).
    [CrossRef]
  26. R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. H. Delville, R. Oda, “Gold nanoparticle deposition on silica nanohelices: a new controllable 3d substrate in aqueous suspension for optical sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
    [CrossRef]
  27. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19(10), 9607–9616 (2011).
    [CrossRef] [PubMed]
  28. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
    [CrossRef] [PubMed]
  29. M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, “Templated techniques for the synthesis and assembly of plasmonic nanostructures,” Chem. Rev. 111(6), 3736–3827 (2011).
    [CrossRef] [PubMed]
  30. A. Tao, S. Habas, P. Yang, “Shape control of colloidal metal nanocrystals,” Small 4(3), 310–325 (2008).
    [CrossRef]
  31. I. Pastoriza-Santos, D. Gomez, J. Pérez-Juste, L. M. Liz-Marzán, P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
    [CrossRef]
  32. T. Pham, J. B. Jackson, N. J. Halas, T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
    [CrossRef]
  33. D. Blair, E. Dufresne, “The matlab particle tracking code repository,” http://physics.georgetown.edu/matlab/index.html .
  34. K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005).
    [CrossRef] [PubMed]
  35. K. Nozawa, M. H. Delville, H. Ushiki, P. Panizza, J. P. Delville, “Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 1), 011404 (2005).
    [CrossRef] [PubMed]
  36. G. Frens, “Controlled Nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).
  37. S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007).
    [CrossRef] [PubMed]
  38. S. Pramanik, P. Banerjee, A. Sarkar, S. C. Bhattacharya, “Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study,” J. Lumin. 128(12), 1969–1974 (2008).
    [CrossRef]
  39. K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994).
    [CrossRef]
  40. Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
    [CrossRef]
  41. C. F. Bohren and D. F. Hufman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  42. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  43. C. Mätzler, “Matlab functions for mie scattering and absorption,” (Research Report, Institut fur Angewandte Physik, University of Bern, Switzerland, 2002). http://www.iapmw.unibe.ch/teaching/vorlesungen/radiative_transfer/HS2012/Mie_Version2.pdf .
  44. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  45. A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
    [CrossRef]
  46. F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
    [CrossRef]
  47. Y. Seol, A. E. Carpenter, T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31(16), 2429–2431 (2006).
    [CrossRef] [PubMed]
  48. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
    [CrossRef] [PubMed]
  49. Y. Hu, R. C. Fleming, R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express 16(24), 19579–19591 (2008).
    [CrossRef] [PubMed]
  50. S. C. Padmanabhan, J. McGrath, M. Bardosova, M. E. Pemble, “A facile method for the synthesis of highly monodisperse silica@gold@silica core–shell–shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals,” J. Mater. Chem. 22(24), 11978–11987 (2012).
    [CrossRef]
  51. M. T. Kumara, N. Srividya, S. Muralidharan, B. C. Tripp, “Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap,” Nano Lett. 6(9), 2121–2129 (2006).
    [CrossRef] [PubMed]

2013

R. W. Bowman, M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[CrossRef] [PubMed]

J. S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

2012

I. Choi, H. D. Song, S. Lee, Y. I. Yang, T. Kang, J. Yi, “Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” J. Am. Chem. Soc. 134(29), 12083–12090 (2012).
[CrossRef] [PubMed]

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. H. Delville, R. Oda, “Gold nanoparticle deposition on silica nanohelices: a new controllable 3d substrate in aqueous suspension for optical sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[CrossRef]

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[CrossRef] [PubMed]

S. C. Padmanabhan, J. McGrath, M. Bardosova, M. E. Pemble, “A facile method for the synthesis of highly monodisperse silica@gold@silica core–shell–shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals,” J. Mater. Chem. 22(24), 11978–11987 (2012).
[CrossRef]

2011

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19(10), 9607–9616 (2011).
[CrossRef] [PubMed]

M. J. Guffey, R. L. Miller, S. K. Gray, N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, “Templated techniques for the synthesis and assembly of plasmonic nanostructures,” Chem. Rev. 111(6), 3736–3827 (2011).
[CrossRef] [PubMed]

2010

2009

M. Rodriguez-Otazo, A. Augier-Calderin, J. P. Galaup, “Nanometer gold–silica composite particles manipulated by optical tweezers,” Opt. Commun. 282(14), 2921–2929 (2009).
[CrossRef]

S. Balint, M. P. Kreuzer, S. Rao, G. Badenes, P. Miskovsky, D. Petrov, “Simple route for preparing optically trappable probes for surface-enhanced Raman scattering,” J. Phys. Chem. C 113(41), 17724–17729 (2009).
[CrossRef]

A. Terray, J. D. Taylor, S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3(4), 044106 (2009).
[CrossRef] [PubMed]

2008

J. R. Moffitt, Y. R. Chemla, S. B. Smith, C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[CrossRef]

H. Zhang, K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[CrossRef] [PubMed]

A. Tao, S. Habas, P. Yang, “Shape control of colloidal metal nanocrystals,” Small 4(3), 310–325 (2008).
[CrossRef]

S. Pramanik, P. Banerjee, A. Sarkar, S. C. Bhattacharya, “Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study,” J. Lumin. 128(12), 1969–1974 (2008).
[CrossRef]

A. Jonás, P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Y. Hu, R. C. Fleming, R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express 16(24), 19579–19591 (2008).
[CrossRef] [PubMed]

2007

S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007).
[CrossRef] [PubMed]

S. J. Hart, A. V. Terray, J. Arnold, “Particle separation and collection using an optical chromatographic filter,” Appl. Phys. Lett. 91(17), 171121 (2007).
[CrossRef]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

2006

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

A. S. Zelenina, R. Quidant, G. Badenes, M. Nieto-Vesperinas, “Tunable optical sorting and manipulation of nanoparticles via plasmon excitation,” Opt. Lett. 31(13), 2054–2056 (2006).
[CrossRef] [PubMed]

Y. Seol, A. E. Carpenter, T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31(16), 2429–2431 (2006).
[CrossRef] [PubMed]

M. T. Kumara, N. Srividya, S. Muralidharan, B. C. Tripp, “Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap,” Nano Lett. 6(9), 2121–2129 (2006).
[CrossRef] [PubMed]

2005

K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005).
[CrossRef] [PubMed]

K. Nozawa, M. H. Delville, H. Ushiki, P. Panizza, J. P. Delville, “Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 1), 011404 (2005).
[CrossRef] [PubMed]

2004

I. Pastoriza-Santos, D. Gomez, J. Pérez-Juste, L. M. Liz-Marzán, P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

R. R. Agayan, T. Horvath, B. H. McNaughton, J. N. Anker, R. Kopelman, “Optical manipulation of metal-silica hybrid nanoparticles,” Proc. SPIE 5514, 502–513 (2004).
[CrossRef]

2003

S. J. Hart, A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

2002

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[CrossRef]

T. Pham, J. B. Jackson, N. J. Halas, T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

1997

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

T. Kaneta, Y. Ishidzu, N. Mishima, T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

1996

Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[CrossRef]

1994

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994).
[CrossRef]

K. Svoboda, S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[CrossRef] [PubMed]

1992

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

1987

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

1986

1973

G. Frens, “Controlled Nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).

1972

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Agayan, R. R.

R. R. Agayan, T. Horvath, B. H. McNaughton, J. N. Anker, R. Kopelman, “Optical manipulation of metal-silica hybrid nanoparticles,” Proc. SPIE 5514, 502–513 (2004).
[CrossRef]

Anker, J. N.

R. R. Agayan, T. Horvath, B. H. McNaughton, J. N. Anker, R. Kopelman, “Optical manipulation of metal-silica hybrid nanoparticles,” Proc. SPIE 5514, 502–513 (2004).
[CrossRef]

Applegate, R. W.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Arnold, J.

S. J. Hart, A. V. Terray, J. Arnold, “Particle separation and collection using an optical chromatographic filter,” Appl. Phys. Lett. 91(17), 171121 (2007).
[CrossRef]

Asakura, T.

Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

Augier-Calderin, A.

M. Rodriguez-Otazo, A. Augier-Calderin, J. P. Galaup, “Nanometer gold–silica composite particles manipulated by optical tweezers,” Opt. Commun. 282(14), 2921–2929 (2009).
[CrossRef]

Badenes, G.

S. Balint, M. P. Kreuzer, S. Rao, G. Badenes, P. Miskovsky, D. Petrov, “Simple route for preparing optically trappable probes for surface-enhanced Raman scattering,” J. Phys. Chem. C 113(41), 17724–17729 (2009).
[CrossRef]

A. S. Zelenina, R. Quidant, G. Badenes, M. Nieto-Vesperinas, “Tunable optical sorting and manipulation of nanoparticles via plasmon excitation,” Opt. Lett. 31(13), 2054–2056 (2006).
[CrossRef] [PubMed]

Bado, P.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Balint, S.

S. Balint, M. P. Kreuzer, S. Rao, G. Badenes, P. Miskovsky, D. Petrov, “Simple route for preparing optically trappable probes for surface-enhanced Raman scattering,” J. Phys. Chem. C 113(41), 17724–17729 (2009).
[CrossRef]

Banerjee, P.

S. Pramanik, P. Banerjee, A. Sarkar, S. C. Bhattacharya, “Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study,” J. Lumin. 128(12), 1969–1974 (2008).
[CrossRef]

Bardosova, M.

S. C. Padmanabhan, J. McGrath, M. Bardosova, M. E. Pemble, “A facile method for the synthesis of highly monodisperse silica@gold@silica core–shell–shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals,” J. Mater. Chem. 22(24), 11978–11987 (2012).
[CrossRef]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

Basu, S.

S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007).
[CrossRef] [PubMed]

Bhattacharya, S. C.

S. Pramanik, P. Banerjee, A. Sarkar, S. C. Bhattacharya, “Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study,” J. Lumin. 128(12), 1969–1974 (2008).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

Bowman, R. W.

R. W. Bowman, M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[CrossRef] [PubMed]

Bürgi, T.

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Carpenter, A. E.

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Choi, I.

I. Choi, H. D. Song, S. Lee, Y. I. Yang, T. Kang, J. Yi, “Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” J. Am. Chem. Soc. 134(29), 12083–12090 (2012).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chu, S.

Cižmár, T.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[CrossRef] [PubMed]

Delville, J. P.

K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005).
[CrossRef] [PubMed]

K. Nozawa, M. H. Delville, H. Ushiki, P. Panizza, J. P. Delville, “Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 1), 011404 (2005).
[CrossRef] [PubMed]

Delville, M. H.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. H. Delville, R. Oda, “Gold nanoparticle deposition on silica nanohelices: a new controllable 3d substrate in aqueous suspension for optical sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[CrossRef]

K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005).
[CrossRef] [PubMed]

K. Nozawa, M. H. Delville, H. Ushiki, P. Panizza, J. P. Delville, “Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 1), 011404 (2005).
[CrossRef] [PubMed]

Dholakia, K.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[CrossRef]

M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Di Falco, A.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[CrossRef] [PubMed]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[CrossRef]

Drezek, R. A.

Dugan, M. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Dziedzic, J. M.

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

Ersen, O.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. H. Delville, R. Oda, “Gold nanoparticle deposition on silica nanohelices: a new controllable 3d substrate in aqueous suspension for optical sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[CrossRef]

Fleming, R. C.

Frens, G.

G. Frens, “Controlled Nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).

Gailhanou, H.

K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005).
[CrossRef] [PubMed]

Galaup, J. P.

M. Rodriguez-Otazo, A. Augier-Calderin, J. P. Galaup, “Nanometer gold–silica composite particles manipulated by optical tweezers,” Opt. Commun. 282(14), 2921–2929 (2009).
[CrossRef]

Garcia-Santamaria, F.

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[CrossRef]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

Ghosh, S. K.

S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007).
[CrossRef] [PubMed]

Gomez, D.

I. Pastoriza-Santos, D. Gomez, J. Pérez-Juste, L. M. Liz-Marzán, P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Gouesbet, G.

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994).
[CrossRef]

Gray, S. K.

M. J. Guffey, R. L. Miller, S. K. Gray, N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

Gréhan, G.

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Guffey, M. J.

M. J. Guffey, R. L. Miller, S. K. Gray, N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

Habas, S.

A. Tao, S. Habas, P. Yang, “Shape control of colloidal metal nanocrystals,” Small 4(3), 310–325 (2008).
[CrossRef]

Halas, N. J.

T. Pham, J. B. Jackson, N. J. Halas, T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

Harada, Y.

Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[CrossRef]

Hart, S. J.

J. S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

A. A. Lall, A. Terray, S. J. Hart, “On-the-fly cross flow laser guided separation of aerosol particles based on size, refractive index and density-theoretical analysis,” Opt. Express 18(26), 26775–26790 (2010).
[CrossRef] [PubMed]

A. Terray, J. D. Taylor, S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3(4), 044106 (2009).
[CrossRef] [PubMed]

S. J. Hart, A. V. Terray, J. Arnold, “Particle separation and collection using an optical chromatographic filter,” Appl. Phys. Lett. 91(17), 171121 (2007).
[CrossRef]

S. J. Hart, A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

Horvath, T.

R. R. Agayan, T. Horvath, B. H. McNaughton, J. N. Anker, R. Kopelman, “Optical manipulation of metal-silica hybrid nanoparticles,” Proc. SPIE 5514, 502–513 (2004).
[CrossRef]

Hu, Y.

Ibisate, M.

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[CrossRef]

Imasaka, T.

T. Kaneta, Y. Ishidzu, N. Mishima, T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

Ishidzu, Y.

T. Kaneta, Y. Ishidzu, N. Mishima, T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

Jackson, J. B.

T. Pham, J. B. Jackson, N. J. Halas, T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

Jana, S.

S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jonás, A.

A. Jonás, P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Jones, M. R.

M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, “Templated techniques for the synthesis and assembly of plasmonic nanostructures,” Chem. Rev. 111(6), 3736–3827 (2011).
[CrossRef] [PubMed]

Kaneta, T.

T. Kaneta, Y. Ishidzu, N. Mishima, T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

Kang, T.

I. Choi, H. D. Song, S. Lee, Y. I. Yang, T. Kang, J. Yi, “Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” J. Am. Chem. Soc. 134(29), 12083–12090 (2012).
[CrossRef] [PubMed]

Kim, J. S. Y.

J. S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

Kopelman, R.

R. R. Agayan, T. Horvath, B. H. McNaughton, J. N. Anker, R. Kopelman, “Optical manipulation of metal-silica hybrid nanoparticles,” Proc. SPIE 5514, 502–513 (2004).
[CrossRef]

Kreuzer, M. P.

S. Balint, M. P. Kreuzer, S. Rao, G. Badenes, P. Miskovsky, D. Petrov, “Simple route for preparing optically trappable probes for surface-enhanced Raman scattering,” J. Phys. Chem. C 113(41), 17724–17729 (2009).
[CrossRef]

Kumara, M. T.

M. T. Kumara, N. Srividya, S. Muralidharan, B. C. Tripp, “Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap,” Nano Lett. 6(9), 2121–2129 (2006).
[CrossRef] [PubMed]

Kundu, S.

S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007).
[CrossRef] [PubMed]

Ladouceur, H. D.

J. S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

Lall, A. A.

Langille, M. R.

M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, “Templated techniques for the synthesis and assembly of plasmonic nanostructures,” Chem. Rev. 111(6), 3736–3827 (2011).
[CrossRef] [PubMed]

Lecomte, S.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. H. Delville, R. Oda, “Gold nanoparticle deposition on silica nanohelices: a new controllable 3d substrate in aqueous suspension for optical sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[CrossRef]

Lederer, F.

Lee, S.

I. Choi, H. D. Song, S. Lee, Y. I. Yang, T. Kang, J. Yi, “Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” J. Am. Chem. Soc. 134(29), 12083–12090 (2012).
[CrossRef] [PubMed]

Lee, T. R.

T. Pham, J. B. Jackson, N. J. Halas, T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

Liu, K. K.

H. Zhang, K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

I. Pastoriza-Santos, D. Gomez, J. Pérez-Juste, L. M. Liz-Marzán, P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Lopez, C.

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Macfarlane, R. J.

M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, “Templated techniques for the synthesis and assembly of plasmonic nanostructures,” Chem. Rev. 111(6), 3736–3827 (2011).
[CrossRef] [PubMed]

Marr, D. W. M.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Mazilu, M.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[CrossRef]

McGrath, J.

S. C. Padmanabhan, J. McGrath, M. Bardosova, M. E. Pemble, “A facile method for the synthesis of highly monodisperse silica@gold@silica core–shell–shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals,” J. Mater. Chem. 22(24), 11978–11987 (2012).
[CrossRef]

McNaughton, B. H.

R. R. Agayan, T. Horvath, B. H. McNaughton, J. N. Anker, R. Kopelman, “Optical manipulation of metal-silica hybrid nanoparticles,” Proc. SPIE 5514, 502–513 (2004).
[CrossRef]

Meseguer, F.

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[CrossRef]

Miguez, H.

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[CrossRef]

Miller, R. L.

M. J. Guffey, R. L. Miller, S. K. Gray, N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

Mirkin, C. A.

M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, “Templated techniques for the synthesis and assembly of plasmonic nanostructures,” Chem. Rev. 111(6), 3736–3827 (2011).
[CrossRef] [PubMed]

Mishima, N.

T. Kaneta, Y. Ishidzu, N. Mishima, T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

Miskovsky, P.

S. Balint, M. P. Kreuzer, S. Rao, G. Badenes, P. Miskovsky, D. Petrov, “Simple route for preparing optically trappable probes for surface-enhanced Raman scattering,” J. Phys. Chem. C 113(41), 17724–17729 (2009).
[CrossRef]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Moldovan, S.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. H. Delville, R. Oda, “Gold nanoparticle deposition on silica nanohelices: a new controllable 3d substrate in aqueous suspension for optical sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[CrossRef]

Mühlig, S.

Mulvaney, P.

I. Pastoriza-Santos, D. Gomez, J. Pérez-Juste, L. M. Liz-Marzán, P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Muralidharan, S.

M. T. Kumara, N. Srividya, S. Muralidharan, B. C. Tripp, “Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap,” Nano Lett. 6(9), 2121–2129 (2006).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

Nozawa, K.

K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005).
[CrossRef] [PubMed]

K. Nozawa, M. H. Delville, H. Ushiki, P. Panizza, J. P. Delville, “Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 1), 011404 (2005).
[CrossRef] [PubMed]

Oakey, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Oda, R.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. H. Delville, R. Oda, “Gold nanoparticle deposition on silica nanohelices: a new controllable 3d substrate in aqueous suspension for optical sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[CrossRef]

Orrit, M.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Osberg, K. D.

M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, “Templated techniques for the synthesis and assembly of plasmonic nanostructures,” Chem. Rev. 111(6), 3736–3827 (2011).
[CrossRef] [PubMed]

Padgett, M. J.

R. W. Bowman, M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[CrossRef] [PubMed]

Padmanabhan, S. C.

S. C. Padmanabhan, J. McGrath, M. Bardosova, M. E. Pemble, “A facile method for the synthesis of highly monodisperse silica@gold@silica core–shell–shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals,” J. Mater. Chem. 22(24), 11978–11987 (2012).
[CrossRef]

Pal, T.

S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007).
[CrossRef] [PubMed]

Pande, S.

S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007).
[CrossRef] [PubMed]

Panigrahi, S.

S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007).
[CrossRef] [PubMed]

Panizza, P.

K. Nozawa, M. H. Delville, H. Ushiki, P. Panizza, J. P. Delville, “Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 1), 011404 (2005).
[CrossRef] [PubMed]

K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

I. Pastoriza-Santos, D. Gomez, J. Pérez-Juste, L. M. Liz-Marzán, P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Pemble, M. E.

S. C. Padmanabhan, J. McGrath, M. Bardosova, M. E. Pemble, “A facile method for the synthesis of highly monodisperse silica@gold@silica core–shell–shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals,” J. Mater. Chem. 22(24), 11978–11987 (2012).
[CrossRef]

Pérez-Juste, J.

I. Pastoriza-Santos, D. Gomez, J. Pérez-Juste, L. M. Liz-Marzán, P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Perkins, T. T.

Petrov, D.

S. Balint, M. P. Kreuzer, S. Rao, G. Badenes, P. Miskovsky, D. Petrov, “Simple route for preparing optically trappable probes for surface-enhanced Raman scattering,” J. Phys. Chem. C 113(41), 17724–17729 (2009).
[CrossRef]

Pham, T.

T. Pham, J. B. Jackson, N. J. Halas, T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

Ploschner, M.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[CrossRef] [PubMed]

Praharaj, S.

S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007).
[CrossRef] [PubMed]

Pramanik, S.

S. Pramanik, P. Banerjee, A. Sarkar, S. C. Bhattacharya, “Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study,” J. Lumin. 128(12), 1969–1974 (2008).
[CrossRef]

Quidant, R.

Raison, L.

K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005).
[CrossRef] [PubMed]

Rao, S.

S. Balint, M. P. Kreuzer, S. Rao, G. Badenes, P. Miskovsky, D. Petrov, “Simple route for preparing optically trappable probes for surface-enhanced Raman scattering,” J. Phys. Chem. C 113(41), 17724–17729 (2009).
[CrossRef]

Ren, K. F.

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994).
[CrossRef]

Rockstuhl, C.

Rodriguez-Otazo, M.

M. Rodriguez-Otazo, A. Augier-Calderin, J. P. Galaup, “Nanometer gold–silica composite particles manipulated by optical tweezers,” Opt. Commun. 282(14), 2921–2929 (2009).
[CrossRef]

Ruijgrok, P. V.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Said, A. A.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Sarkar, A.

S. Pramanik, P. Banerjee, A. Sarkar, S. C. Bhattacharya, “Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study,” J. Lumin. 128(12), 1969–1974 (2008).
[CrossRef]

Scherer, N. F.

M. J. Guffey, R. L. Miller, S. K. Gray, N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

Sellier, E.

K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005).
[CrossRef] [PubMed]

Seol, Y.

Shalkevich, N.

Si, S.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. H. Delville, R. Oda, “Gold nanoparticle deposition on silica nanohelices: a new controllable 3d substrate in aqueous suspension for optical sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[CrossRef]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Song, H. D.

I. Choi, H. D. Song, S. Lee, Y. I. Yang, T. Kang, J. Yi, “Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” J. Am. Chem. Soc. 134(29), 12083–12090 (2012).
[CrossRef] [PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Squier, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Srividya, N.

M. T. Kumara, N. Srividya, S. Muralidharan, B. C. Tripp, “Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap,” Nano Lett. 6(9), 2121–2129 (2006).
[CrossRef] [PubMed]

Svoboda, K.

Tamoto, R.

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. H. Delville, R. Oda, “Gold nanoparticle deposition on silica nanohelices: a new controllable 3d substrate in aqueous suspension for optical sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[CrossRef]

Tao, A.

A. Tao, S. Habas, P. Yang, “Shape control of colloidal metal nanocrystals,” Small 4(3), 310–325 (2008).
[CrossRef]

Taylor, J. D.

J. S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

A. Terray, J. D. Taylor, S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3(4), 044106 (2009).
[CrossRef] [PubMed]

Tchebotareva, A. L.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Terray, A.

J. S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

A. A. Lall, A. Terray, S. J. Hart, “On-the-fly cross flow laser guided separation of aerosol particles based on size, refractive index and density-theoretical analysis,” Opt. Express 18(26), 26775–26790 (2010).
[CrossRef] [PubMed]

A. Terray, J. D. Taylor, S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3(4), 044106 (2009).
[CrossRef] [PubMed]

Terray, A. V.

S. J. Hart, A. V. Terray, J. Arnold, “Particle separation and collection using an optical chromatographic filter,” Appl. Phys. Lett. 91(17), 171121 (2007).
[CrossRef]

S. J. Hart, A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

Tripp, B. C.

M. T. Kumara, N. Srividya, S. Muralidharan, B. C. Tripp, “Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap,” Nano Lett. 6(9), 2121–2129 (2006).
[CrossRef] [PubMed]

Ushiki, H.

K. Nozawa, M. H. Delville, H. Ushiki, P. Panizza, J. P. Delville, “Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 1), 011404 (2005).
[CrossRef] [PubMed]

K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005).
[CrossRef] [PubMed]

Verhart, N. R.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Vestad, T.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Yang, P.

A. Tao, S. Habas, P. Yang, “Shape control of colloidal metal nanocrystals,” Small 4(3), 310–325 (2008).
[CrossRef]

Yang, Y. I.

I. Choi, H. D. Song, S. Lee, Y. I. Yang, T. Kang, J. Yi, “Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” J. Am. Chem. Soc. 134(29), 12083–12090 (2012).
[CrossRef] [PubMed]

Yannopapas, V.

Yi, J.

I. Choi, H. D. Song, S. Lee, Y. I. Yang, T. Kang, J. Yi, “Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” J. Am. Chem. Soc. 134(29), 12083–12090 (2012).
[CrossRef] [PubMed]

Zelenina, A. S.

Zemánek, P.

A. Jonás, P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang, K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[CrossRef] [PubMed]

Zijlstra, P.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Anal. Chem.

T. Kaneta, Y. Ishidzu, N. Mishima, T. Imasaka, “Theory of optical chromatography,” Anal. Chem. 69(14), 2701–2710 (1997).
[CrossRef] [PubMed]

Annu. Rev. Biochem.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. S. Y. Kim, J. D. Taylor, H. D. Ladouceur, S. J. Hart, A. Terray, “Radiation pressure efficiency measurements of nanoparticle coated microspheres,” Appl. Phys. Lett. 103(23), 234101 (2013).
[CrossRef]

S. J. Hart, A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

S. J. Hart, A. V. Terray, J. Arnold, “Particle separation and collection using an optical chromatographic filter,” Appl. Phys. Lett. 91(17), 171121 (2007).
[CrossRef]

Biomicrofluidics

A. Terray, J. D. Taylor, S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3(4), 044106 (2009).
[CrossRef] [PubMed]

Biophys. J.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

Chem. Rev.

M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, “Templated techniques for the synthesis and assembly of plasmonic nanostructures,” Chem. Rev. 111(6), 3736–3827 (2011).
[CrossRef] [PubMed]

Electrophoresis

A. Jonás, P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

I. Choi, H. D. Song, S. Lee, Y. I. Yang, T. Kang, J. Yi, “Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex,” J. Am. Chem. Soc. 134(29), 12083–12090 (2012).
[CrossRef] [PubMed]

J. Colloid Interface Sci.

S. Basu, S. K. Ghosh, S. Kundu, S. Panigrahi, S. Praharaj, S. Pande, S. Jana, T. Pal, “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” J. Colloid Interface Sci. 313(2), 724–734 (2007).
[CrossRef] [PubMed]

J. Lumin.

S. Pramanik, P. Banerjee, A. Sarkar, S. C. Bhattacharya, “Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study,” J. Lumin. 128(12), 1969–1974 (2008).
[CrossRef]

J. Mater. Chem.

S. C. Padmanabhan, J. McGrath, M. Bardosova, M. E. Pemble, “A facile method for the synthesis of highly monodisperse silica@gold@silica core–shell–shell particles and their use in the fabrication of three-dimensional metallodielectric photonic crystals,” J. Mater. Chem. 22(24), 11978–11987 (2012).
[CrossRef]

J. Nanophotonics

M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[CrossRef]

J. Phys. Chem. C

S. Balint, M. P. Kreuzer, S. Rao, G. Badenes, P. Miskovsky, D. Petrov, “Simple route for preparing optically trappable probes for surface-enhanced Raman scattering,” J. Phys. Chem. C 113(41), 17724–17729 (2009).
[CrossRef]

R. Tamoto, S. Lecomte, S. Si, S. Moldovan, O. Ersen, M. H. Delville, R. Oda, “Gold nanoparticle deposition on silica nanohelices: a new controllable 3d substrate in aqueous suspension for optical sensing,” J. Phys. Chem. C 116(43), 23143–23152 (2012).
[CrossRef]

J. R. Soc. Interface

H. Zhang, K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[CrossRef] [PubMed]

Lab Chip

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006).
[CrossRef] [PubMed]

Langmuir

T. Pham, J. B. Jackson, N. J. Halas, T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18(12), 4915–4920 (2002).
[CrossRef]

K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville, M. H. Delville, “Smart control of monodisperse Stöber silica particles: effect of reactant addition rate on growth process,” Langmuir 21(4), 1516–1523 (2005).
[CrossRef] [PubMed]

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[CrossRef]

Nano Lett.

M. T. Kumara, N. Srividya, S. Muralidharan, B. C. Tripp, “Bioengineered flagella protein nanotubes with cysteine loops: self-assembly and manipulation in an optical trap,” Nano Lett. 6(9), 2121–2129 (2006).
[CrossRef] [PubMed]

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[CrossRef] [PubMed]

M. J. Guffey, R. L. Miller, S. K. Gray, N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

Nature

M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

G. Frens, “Controlled Nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Commun.

K. F. Ren, G. Gréhan, G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108(4-6), 343–354 (1994).
[CrossRef]

Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[CrossRef]

M. Rodriguez-Otazo, A. Augier-Calderin, J. P. Galaup, “Nanometer gold–silica composite particles manipulated by optical tweezers,” Opt. Commun. 282(14), 2921–2929 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

I. Pastoriza-Santos, D. Gomez, J. Pérez-Juste, L. M. Liz-Marzán, P. Mulvaney, “Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach,” Phys. Chem. Chem. Phys. 6, 5056–5060 (2004).
[CrossRef]

Phys. Rev. B

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

K. Nozawa, M. H. Delville, H. Ushiki, P. Panizza, J. P. Delville, “Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1 Pt 1), 011404 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

Proc. SPIE

A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

R. R. Agayan, T. Horvath, B. H. McNaughton, J. N. Anker, R. Kopelman, “Optical manipulation of metal-silica hybrid nanoparticles,” Proc. SPIE 5514, 502–513 (2004).
[CrossRef]

Rep. Prog. Phys.

R. W. Bowman, M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[CrossRef] [PubMed]

Science

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

Small

A. Tao, S. Habas, P. Yang, “Shape control of colloidal metal nanocrystals,” Small 4(3), 310–325 (2008).
[CrossRef]

Other

D. Blair, E. Dufresne, “The matlab particle tracking code repository,” http://physics.georgetown.edu/matlab/index.html .

C. F. Bohren and D. F. Hufman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

C. Mätzler, “Matlab functions for mie scattering and absorption,” (Research Report, Institut fur Angewandte Physik, University of Bern, Switzerland, 2002). http://www.iapmw.unibe.ch/teaching/vorlesungen/radiative_transfer/HS2012/Mie_Version2.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Scheme of the experimental chromatography setup. (b) Illustration of flowing particles in the microchannel; particles are magnified by the scattering of the green laser light (c) TEM image of a silica-gold raspberry particle with core diameter D = 1.17 µm and adsorbed gold nanosdots of diameter d = 15 nm (sample α, Table 1.).

Fig. 2
Fig. 2

Trajectories of 75 silica-gold raspberry particles (sample α, silica core diameter D = 1.17 µm coated by 15 nm gold nanodots) measured in the velocity mode as a function of time lapse for a laser beam of power P = 0.75 W and beam waist ω = 17 µm. The Inset shows the statistic distribution in particle velocity extracted from linear fitting of the trajectory set.

Fig. 3
Fig. 3

Velocity as function of the incident laser beam power measured for different types of particles. (a) Core dielectric particles with a diameter of 1.17µm (black empty squares) and SiO2@Au raspberries sample α (blue squares). (b) Core particles with a diameter of 1.46µm (black empty circles) and raspberries (green and red circles correspond to sample β and γ respectively). Error bars represent standard deviations. The linear fits are guides for the eye.

Fig. 4
Fig. 4

Wavelength dependence of the radiation pressure cross section Crp of silica-gold raspberries calculated using Mie theory for silica core diameter D = 1.46 µm, and d = 15 nm thick composite shell composed of water and gold nanodots with volume fraction ϕ = 0.20% (green), 0.45% (red), 1% (blue) and 2% (cyan). The behavior in black describes the silica core case. The vertical dashed line indicates the optical excitation wavelength of 532 nm. The Inset represents the evolution of the enhancement factor, i.e. the ratio of Crp for raspberries over Crpcore for silica core as a function of the metal volume fraction ϕ.

Fig. 5
Fig. 5

(a) Absorption cross section of silica-gold raspberries at 532 nm using Mie theory for silica core diameter D = 1.46 µm, and d = 15 nm thick composite shell (gold and water) as a function of the volume fraction ϕ (black) and the corresponding temperature increase at the surface of the particle for a 1W laser illumination (red dotted line). (b) Temperature dependence of water viscosity estimated with the Vogel-Fulcher empiric law. (c) Evolution of the enhancement factor Crp/Crpcore as a function of the metal volume fraction ϕ using Mie calculations (black line) and from the experimental data (sample β in green and γ in red) considering the effect of temperature increase (from (a)) and temperature dependence of viscosity (from (b)). (d) Optical force variations as a function of the incident laser beam power P measured for core dielectric particles with D = 1.46µm (black empty circles), raspberries sample β (green circles) and sample γ (red circles).

Fig. 6
Fig. 6

Radiation pressure force variation versus the radius R of silica-gold raspberries predicted by Mie theory (red curve: ϕ = 0.45% as a mean between 0.43% (sample γ) and 0.47% (sample α), green curve: ϕ = 0.20%) and measured experimentally in the three raspberries samples (black-gray dots). Also shown for the comparison, are the calculation and measurements on core silica particles (black curve and empty circles respectively). The dashed curve represents the forces in the ray optics approximation for silica particles. Error bars also appear on calculations (just represented for silica particles for the sake of clearness) to take into account the weak beam size variation over the Rayleigh length during the particle displacement in the microchannel.

Tables (1)

Tables Icon

Table 1 Data on raspberries samples: diameter of the core silica microparticles, gold volume fraction ϕ100% estimated from quantities used in chemical synthesis, gold volume fraction ϕ deduced from cross section calculations and measured enhancement factor of optical forces compared to silica core

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F rp = 2P π ω 2 n c π R 2 Q rp =2P n c R 2 ω 2 Q rp .
ε shell = ε m ε ˜ ( 1+2ϕ )+2 ε m ( 1ϕ ) ε ˜ ( 1ϕ )+ ε m ( 2+ϕ ) ,
T( rR+d )= T + C abs I 4πΛ 1 r ,

Metrics