Abstract

We generate 1.24 mJ, 390 fs pulses at 1035 nm in a CPA laser system featuring a 2.8 mJ Yb:CaF2 regenerative amplifier, stretcher/compressor based on a single chirped volume Bragg grating and a compact, low-dispersion grating compressor. The auxiliary compressor is used to effectively pre-compensate the intra-cavity dispersion of the amplifier.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [CrossRef]
  2. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [CrossRef]
  3. O. E. Martinez, T. Prabhuram, M. C. Marconi, J. J. Rocca, “Magnified expansion and compression of subpicosecond pulses from a frequency-doubled Nd:YLF laser,” IEEE J. Quantum Electron. 25(10), 2124–2128 (1989).
    [CrossRef]
  4. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express 19(1), 255–260 (2011).
    [CrossRef] [PubMed]
  5. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34(9), 1378–1380 (2009).
    [CrossRef] [PubMed]
  6. G. H. Kim, J. Yang, S. A. Chizhov, E. G. Sall, A. V. Kulik, V. E. Yashin, D. S. Lee, U. Kang, “High average-power ultrafast CPA Yb:KYW laser system with dual-slab amplifier,” Opt. Express 20(4), 3434–3442 (2012).
    [CrossRef] [PubMed]
  7. A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66(9), 1053–1055 (1995).
    [CrossRef]
  8. A. Galvanauskas, D. Harter, M. A. Arbore, M. H. Chou, M. M. Fejer, “Chirped-pulse-amplification circuits for fiber amplifiers, based on chirped-period quasi-phase-matching gratings,” Opt. Lett. 23(21), 1695–1697 (1998).
    [CrossRef] [PubMed]
  9. A. Galvanauskas, A. Heaney, T. Erdogan, and D. Harter, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” in Conference on Lasers and Electro-Optics, Vol. 6, Technical Digest Series (Optical Society of America) (1998), pp. 362.
    [CrossRef]
  10. O. V. Belai, E. V. Podivilov, D. A. Shapiro, “Group delay in Bragg grating with linear chirp,” Opt. Commun. 266(2), 512–520 (2006).
    [CrossRef]
  11. R. Kashyap, Fiber Bragg Gratings (Academic, 2010).
  12. G. Chang, M. Rever, V. Smirnov, L. Glebov, A. Galvanauskas, “Femtosecond Yb-fiber chirped-pulse-amplification system based on chirped-volume Bragg gratings,” Opt. Lett. 34(19), 2952–2954 (2009).
    [CrossRef] [PubMed]
  13. L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
    [CrossRef]
  14. E. Slobodtchikov and P. F. Moulton, “Compact femtosecond laser system with 2 mJ output,” in Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), Bedford, MA, USA, May 2010.
    [CrossRef]
  15. K.-H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
    [CrossRef] [PubMed]
  16. S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104(1), 11–16 (2011).
    [CrossRef]
  17. C. P. João, J. Wemans, G. Figueira, “Numerical simulation of high-energy, ytterbium-doped amplifier tunability,” Appl. Sci. 3(1), 288–298 (2013).
    [CrossRef]

2014 (1)

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[CrossRef]

2013 (1)

C. P. João, J. Wemans, G. Figueira, “Numerical simulation of high-energy, ytterbium-doped amplifier tunability,” Appl. Sci. 3(1), 288–298 (2013).
[CrossRef]

2012 (1)

2011 (2)

T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express 19(1), 255–260 (2011).
[CrossRef] [PubMed]

S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104(1), 11–16 (2011).
[CrossRef]

2009 (2)

2008 (1)

2006 (1)

O. V. Belai, E. V. Podivilov, D. A. Shapiro, “Group delay in Bragg grating with linear chirp,” Opt. Commun. 266(2), 512–520 (2006).
[CrossRef]

1998 (1)

1995 (1)

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66(9), 1053–1055 (1995).
[CrossRef]

1989 (1)

O. E. Martinez, T. Prabhuram, M. C. Marconi, J. J. Rocca, “Magnified expansion and compression of subpicosecond pulses from a frequency-doubled Nd:YLF laser,” IEEE J. Quantum Electron. 25(10), 2124–2128 (1989).
[CrossRef]

1985 (1)

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Arbore, M. A.

Belai, O. V.

O. V. Belai, E. V. Podivilov, D. A. Shapiro, “Group delay in Bragg grating with linear chirp,” Opt. Commun. 266(2), 512–520 (2006).
[CrossRef]

Bennion, I.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66(9), 1053–1055 (1995).
[CrossRef]

Bödefeld, R.

S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104(1), 11–16 (2011).
[CrossRef]

Carstens, H.

Chang, G.

Chizhov, S. A.

Chou, M. H.

Cohanoschi, I.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[CrossRef]

Eidam, T.

Fan, T. Y.

Fejer, M. M.

Fermann, M. E.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66(9), 1053–1055 (1995).
[CrossRef]

Figueira, G.

C. P. João, J. Wemans, G. Figueira, “Numerical simulation of high-energy, ytterbium-doped amplifier tunability,” Appl. Sci. 3(1), 288–298 (2013).
[CrossRef]

Galvanauskas, A.

Glebov, A.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[CrossRef]

Glebov, L.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[CrossRef]

G. Chang, M. Rever, V. Smirnov, L. Glebov, A. Galvanauskas, “Femtosecond Yb-fiber chirped-pulse-amplification system based on chirped-volume Bragg gratings,” Opt. Lett. 34(19), 2952–2954 (2009).
[CrossRef] [PubMed]

Glebova, L.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[CrossRef]

Gopinath, J.

Hädrich, S.

Harter, D.

A. Galvanauskas, D. Harter, M. A. Arbore, M. H. Chou, M. M. Fejer, “Chirped-pulse-amplification circuits for fiber amplifiers, based on chirped-period quasi-phase-matching gratings,” Opt. Lett. 23(21), 1695–1697 (1998).
[CrossRef] [PubMed]

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66(9), 1053–1055 (1995).
[CrossRef]

Hein, J.

S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104(1), 11–16 (2011).
[CrossRef]

Hong, K.-H.

Hornung, M.

S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104(1), 11–16 (2011).
[CrossRef]

Hybl, J.

Ilday, F. Ö.

Jansen, F.

Jauregui, C.

João, C. P.

C. P. João, J. Wemans, G. Figueira, “Numerical simulation of high-energy, ytterbium-doped amplifier tunability,” Appl. Sci. 3(1), 288–298 (2013).
[CrossRef]

Jung, R.

Kaluza, M. C.

S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104(1), 11–16 (2011).
[CrossRef]

Kang, U.

Kärtner, F. X.

Keppler, S.

S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104(1), 11–16 (2011).
[CrossRef]

Kim, G. H.

Kulik, A. V.

Lantigua, C.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[CrossRef]

Lee, D. S.

Limpert, J.

Lumeau, J.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[CrossRef]

Marconi, M. C.

O. E. Martinez, T. Prabhuram, M. C. Marconi, J. J. Rocca, “Magnified expansion and compression of subpicosecond pulses from a frequency-doubled Nd:YLF laser,” IEEE J. Quantum Electron. 25(10), 2124–2128 (1989).
[CrossRef]

Martinez, O. E.

O. E. Martinez, T. Prabhuram, M. C. Marconi, J. J. Rocca, “Magnified expansion and compression of subpicosecond pulses from a frequency-doubled Nd:YLF laser,” IEEE J. Quantum Electron. 25(10), 2124–2128 (1989).
[CrossRef]

Moses, J.

Mourou, G.

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Nickles, P. V.

Podivilov, E. V.

O. V. Belai, E. V. Podivilov, D. A. Shapiro, “Group delay in Bragg grating with linear chirp,” Opt. Commun. 266(2), 512–520 (2006).
[CrossRef]

Prabhuram, T.

O. E. Martinez, T. Prabhuram, M. C. Marconi, J. J. Rocca, “Magnified expansion and compression of subpicosecond pulses from a frequency-doubled Nd:YLF laser,” IEEE J. Quantum Electron. 25(10), 2124–2128 (1989).
[CrossRef]

Rever, M.

Rocca, J. J.

O. E. Martinez, T. Prabhuram, M. C. Marconi, J. J. Rocca, “Magnified expansion and compression of subpicosecond pulses from a frequency-doubled Nd:YLF laser,” IEEE J. Quantum Electron. 25(10), 2124–2128 (1989).
[CrossRef]

Rotari, E.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[CrossRef]

Rothhardt, J.

Sall, E. G.

Sandner, W.

Sävert, A.

S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104(1), 11–16 (2011).
[CrossRef]

Shapiro, D. A.

O. V. Belai, E. V. Podivilov, D. A. Shapiro, “Group delay in Bragg grating with linear chirp,” Opt. Commun. 266(2), 512–520 (2006).
[CrossRef]

Siddiqui, A.

Smirnov, V.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[CrossRef]

G. Chang, M. Rever, V. Smirnov, L. Glebov, A. Galvanauskas, “Femtosecond Yb-fiber chirped-pulse-amplification system based on chirped-volume Bragg gratings,” Opt. Lett. 34(19), 2952–2954 (2009).
[CrossRef] [PubMed]

Smolski, O.

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[CrossRef]

Stiel, H.

Strickland, D.

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Stutzki, F.

Sugden, K.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66(9), 1053–1055 (1995).
[CrossRef]

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Tümmler, J.

Tünnermann, A.

Wemans, J.

C. P. João, J. Wemans, G. Figueira, “Numerical simulation of high-energy, ytterbium-doped amplifier tunability,” Appl. Sci. 3(1), 288–298 (2013).
[CrossRef]

Yang, J.

Yashin, V. E.

Appl. Phys. B (1)

S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M. C. Kaluza, “Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser,” Appl. Phys. B 104(1), 11–16 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66(9), 1053–1055 (1995).
[CrossRef]

Appl. Sci. (1)

C. P. João, J. Wemans, G. Figueira, “Numerical simulation of high-energy, ytterbium-doped amplifier tunability,” Appl. Sci. 3(1), 288–298 (2013).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

O. E. Martinez, T. Prabhuram, M. C. Marconi, J. J. Rocca, “Magnified expansion and compression of subpicosecond pulses from a frequency-doubled Nd:YLF laser,” IEEE J. Quantum Electron. 25(10), 2124–2128 (1989).
[CrossRef]

Opt. Commun. (2)

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

O. V. Belai, E. V. Podivilov, D. A. Shapiro, “Group delay in Bragg grating with linear chirp,” Opt. Commun. 266(2), 512–520 (2006).
[CrossRef]

Opt. Eng. (1)

L. Glebov, V. Smirnov, E. Rotari, I. Cohanoschi, L. Glebova, O. Smolski, J. Lumeau, C. Lantigua, A. Glebov, “Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses,” Opt. Eng. 53(5), 051514 (2014).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Other (3)

E. Slobodtchikov and P. F. Moulton, “Compact femtosecond laser system with 2 mJ output,” in Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), Bedford, MA, USA, May 2010.
[CrossRef]

R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

A. Galvanauskas, A. Heaney, T. Erdogan, and D. Harter, “Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits,” in Conference on Lasers and Electro-Optics, Vol. 6, Technical Digest Series (Optical Society of America) (1998), pp. 362.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the diode-pumped Yb:CaF2 CPA system. Green box: Treacy compressor; yellow box: regenerative amplifier.

Fig. 2
Fig. 2

Oscillator (black) and input signal for regenerative amplifier (gray) spectra.

Fig. 3
Fig. 3

SHG-FROG results for the compressed pulses (CVBG alone). Left – measured (red) and retrieved (blue) spectral intensity and phase (green); right – retrieved temporal intensity (blue) and phase (green).

Fig. 4
Fig. 4

Evolution of pulse spectrum in the CPA system: Input signal (gray), amplified (black solid line) and final output pulses (black dashed line).

Fig. 5
Fig. 5

Beam intensity profile after amplification (a) and compression (b).

Fig. 6
Fig. 6

Autocorrelation measurement for pulse compressed in the CVBG (black) and theoretical Fourier Transform limit autocorrelation (gray).

Tables (1)

Tables Icon

Table 1 Second (GDD) and Third Order (TOD) Dispersion in the CPA System

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ=2nΛ(z)cosθ

Metrics