Abstract

Within the past several years a tremendous progress regarding optical nano-antennas could be witnessed. It is one purpose of optical nano-antennas to resonantly enhance light-matter interactions at the nanoscale, e.g. the interaction of an external illumination with molecules. In this specific, but in almost all schemes that take advantage of resonantly enhanced electromagnetic fields in the vicinity of nano-antennas, the precise knowledge of the spectral position of resonances is of paramount importance to fully exploit their beneficial effects. Thus far, however, many nano-antennas were only optimized with respect to their far-field characteristics, i.e. in terms of their scattering or extinction cross sections. Although being an emerging feature in many numerical simulations, it was only recently fully appreciated that there exists a subtle but very important difference in the spectral position of resonances in the near-and the far-field. With the purpose to quantify this shift, Zuloaga et al. suggested a Lorentzian model to estimate the resonance shift. Here, we devise on fully analytical grounds a strategy to predict the resonance in the near-field directly from that in the far-field and disclose that the issue is involved and multifaceted, in general. We outline the limitations of our theory if more sophisticated optical nano-antennas are considered where higher order multipolar contributions and higher order antenna resonances become increasingly important. Both aspects are highlighted by numerically studying relevant nano-antennas.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny, N. v. Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [CrossRef]
  2. P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
    [CrossRef] [PubMed]
  3. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
    [CrossRef]
  4. D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
    [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  6. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
    [CrossRef] [PubMed]
  7. D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
    [CrossRef]
  8. M. K. Schmidt, R. Esteban, J. J. Saenz, I. Suarez-Lacalle, S. Mackowski, J. Aizpurua, “Dielectric antennas-a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
    [CrossRef] [PubMed]
  9. D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403, 27–54 (2012).
    [CrossRef]
  10. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
    [CrossRef] [PubMed]
  11. I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
    [CrossRef] [PubMed]
  12. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, H. Giessen, “Hole-mask colloidal nano-lithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6, 979–985 (2012).
    [CrossRef]
  13. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
    [CrossRef] [PubMed]
  14. R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, F. Lederer, “Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas,” Phys. Rev. B 86, 035404 (2012).
    [CrossRef]
  15. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97, 266808 (2006).
    [CrossRef]
  16. R. Vogelgesang, A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
    [CrossRef] [PubMed]
  17. A. M. Kern, O. J. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011).
    [CrossRef] [PubMed]
  18. Barbara J. Messinger, K. U. v. Raben, R. K. Chang, P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649–657 (1981).
    [CrossRef]
  19. J. Zuloaga, P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
    [CrossRef] [PubMed]
  20. P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
    [CrossRef]
  21. L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee, J. H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127 (2010).
    [CrossRef]
  22. M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, M. Wegener, “Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas,” Phys. Rev. Lett. 109, 233902 (2012).
    [CrossRef]
  23. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 1983).
  24. J. Pomplun, S. Burger, L. Zschiedrich, F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. B 244, 3419–3434 (2007).
    [CrossRef]
  25. F. Moreno, P. Albella, M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29, 6715–6721 (2013).
    [CrossRef] [PubMed]
  26. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  27. Y. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995).
    [CrossRef] [PubMed]
  28. S. Mühlig, C. Menzel, C. Rockstuhl, F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
    [CrossRef]
  29. T. Okamoto, “Near-field spectral analysis of metallic beads,” Top. Appl. Phys. 81, 97–123 (2001).
    [CrossRef]
  30. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  31. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
    [CrossRef] [PubMed]
  32. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
    [CrossRef]

2013 (4)

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

F. Moreno, P. Albella, M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29, 6715–6721 (2013).
[CrossRef] [PubMed]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[CrossRef] [PubMed]

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[CrossRef] [PubMed]

2012 (9)

M. K. Schmidt, R. Esteban, J. J. Saenz, I. Suarez-Lacalle, S. Mackowski, J. Aizpurua, “Dielectric antennas-a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[CrossRef] [PubMed]

P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, M. Wegener, “Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas,” Phys. Rev. Lett. 109, 233902 (2012).
[CrossRef]

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403, 27–54 (2012).
[CrossRef]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, H. Giessen, “Hole-mask colloidal nano-lithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6, 979–985 (2012).
[CrossRef]

R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, F. Lederer, “Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas,” Phys. Rev. B 86, 035404 (2012).
[CrossRef]

2011 (6)

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[CrossRef] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

L. Novotny, N. v. Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

A. M. Kern, O. J. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011).
[CrossRef] [PubMed]

S. Mühlig, C. Menzel, C. Rockstuhl, F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

J. Zuloaga, P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef] [PubMed]

2010 (2)

L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee, J. H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127 (2010).
[CrossRef]

R. Vogelgesang, A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[CrossRef] [PubMed]

2009 (1)

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef]

2007 (1)

J. Pomplun, S. Burger, L. Zschiedrich, F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. B 244, 3419–3434 (2007).
[CrossRef]

2006 (1)

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

2005 (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2001 (1)

T. Okamoto, “Near-field spectral analysis of metallic beads,” Top. Appl. Phys. 81, 97–123 (2001).
[CrossRef]

1995 (1)

1981 (1)

Barbara J. Messinger, K. U. v. Raben, R. K. Chang, P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649–657 (1981).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Abdelsalam, M. E.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Aizpurua, J.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

M. K. Schmidt, R. Esteban, J. J. Saenz, I. Suarez-Lacalle, S. Mackowski, J. Aizpurua, “Dielectric antennas-a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[CrossRef] [PubMed]

Albella, P.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

F. Moreno, P. Albella, M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29, 6715–6721 (2013).
[CrossRef] [PubMed]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Alonso-González, P.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Anderson, L. J. E.

L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee, J. H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127 (2010).
[CrossRef]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Atwater, H. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[CrossRef] [PubMed]

Aydin, K.

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[CrossRef] [PubMed]

Barber, P. W.

Barbara J. Messinger, K. U. v. Raben, R. K. Chang, P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649–657 (1981).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Bartlett, P. N.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

Baumberg, J. J.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

Belov, P. A.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Biagioni, P.

P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef] [PubMed]

Böhme, R.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403, 27–54 (2012).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 1983).

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

Braun, P. V.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, H. Giessen, “Hole-mask colloidal nano-lithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6, 979–985 (2012).
[CrossRef]

Burger, S.

J. Pomplun, S. Burger, L. Zschiedrich, F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. B 244, 3419–3434 (2007).
[CrossRef]

Busch, K.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, M. Wegener, “Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas,” Phys. Rev. Lett. 109, 233902 (2012).
[CrossRef]

Casanova, F.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Cataldo, S.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, H. Giessen, “Hole-mask colloidal nano-lithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6, 979–985 (2012).
[CrossRef]

Chang, R. K.

Barbara J. Messinger, K. U. v. Raben, R. K. Chang, P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649–657 (1981).
[CrossRef]

Chen, J.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cialla, D.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403, 27–54 (2012).
[CrossRef]

Curto, A. G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Diehl, R.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, M. Wegener, “Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas,” Phys. Rev. Lett. 109, 233902 (2012).
[CrossRef]

Dmitriev, A.

R. Vogelgesang, A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[CrossRef] [PubMed]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef]

Dregely, D.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[CrossRef] [PubMed]

Duan, H.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Eichelkraut, T.

R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, F. Lederer, “Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas,” Phys. Rev. B 86, 035404 (2012).
[CrossRef]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

Esteban, R.

Etrich, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef]

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

Filonov, D. S.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Filter, R.

R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, F. Lederer, “Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas,” Phys. Rev. B 86, 035404 (2012).
[CrossRef]

Fraleigh, R. D.

L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee, J. H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127 (2010).
[CrossRef]

Frank, B.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, H. Giessen, “Hole-mask colloidal nano-lithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6, 979–985 (2012).
[CrossRef]

Giessen, H.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[CrossRef] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, H. Giessen, “Hole-mask colloidal nano-lithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6, 979–985 (2012).
[CrossRef]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Golmar, F.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef] [PubMed]

Hafner, J. H.

L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee, J. H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127 (2010).
[CrossRef]

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef] [PubMed]

Hecht, B.

P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Hillenbrand, R.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef] [PubMed]

Huang, J.-S.

P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef] [PubMed]

Huck, C.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Hueso, L. E.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 1983).

Hulst, N. v.

L. Novotny, N. v. Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef] [PubMed]

Husnik, M.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, M. Wegener, “Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas,” Phys. Rev. Lett. 109, 233902 (2012).
[CrossRef]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kapitanova, P. V.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Kelaita, Y. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[CrossRef] [PubMed]

Kelf, T. A.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

Kern, A. M.

A. M. Kern, O. J. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011).
[CrossRef] [PubMed]

Kern, K.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Kivshar, Y. S.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Krasnok, A. E.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[CrossRef] [PubMed]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef] [PubMed]

Lederer, F.

R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, F. Lederer, “Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas,” Phys. Rev. B 86, 035404 (2012).
[CrossRef]

S. Mühlig, C. Menzel, C. Rockstuhl, F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef]

Lee, S.

L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee, J. H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127 (2010).
[CrossRef]

Linden, S.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, M. Wegener, “Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas,” Phys. Rev. Lett. 109, 233902 (2012).
[CrossRef]

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Mackowski, S.

Martin, O. J.

A. M. Kern, O. J. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011).
[CrossRef] [PubMed]

März, A.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403, 27–54 (2012).
[CrossRef]

Mayer, K. M.

L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee, J. H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127 (2010).
[CrossRef]

Menzel, C.

S. Mühlig, C. Menzel, C. Rockstuhl, F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

Messinger, Barbara J.

Barbara J. Messinger, K. U. v. Raben, R. K. Chang, P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649–657 (1981).
[CrossRef]

Moreno, F.

F. Moreno, P. Albella, M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29, 6715–6721 (2013).
[CrossRef] [PubMed]

Mühlig, S.

R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, F. Lederer, “Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas,” Phys. Rev. B 86, 035404 (2012).
[CrossRef]

S. Mühlig, C. Menzel, C. Rockstuhl, F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

Nenasheva, E. A.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Neubrech, F.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[CrossRef] [PubMed]

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, H. Giessen, “Hole-mask colloidal nano-lithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6, 979–985 (2012).
[CrossRef]

Niegemann, J.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, M. Wegener, “Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas,” Phys. Rev. Lett. 109, 233902 (2012).
[CrossRef]

Nieto-Vesperinas, M.

F. Moreno, P. Albella, M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29, 6715–6721 (2013).
[CrossRef] [PubMed]

Nordlander, P.

J. Zuloaga, P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef] [PubMed]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, N. v. Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Okamoto, T.

T. Okamoto, “Near-field spectral analysis of metallic beads,” Top. Appl. Phys. 81, 97–123 (2001).
[CrossRef]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef] [PubMed]

Pertsch, T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef]

Pomplun, J.

J. Pomplun, S. Burger, L. Zschiedrich, F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. B 244, 3419–3434 (2007).
[CrossRef]

Popp, J.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403, 27–54 (2012).
[CrossRef]

Pryce, I. M.

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[CrossRef] [PubMed]

Pucci, A.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

Quidant, R.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[CrossRef] [PubMed]

Raben, K. U. v.

Barbara J. Messinger, K. U. v. Raben, R. K. Chang, P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649–657 (1981).
[CrossRef]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

Rockstuhl, C.

R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, F. Lederer, “Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas,” Phys. Rev. B 86, 035404 (2012).
[CrossRef]

S. Mühlig, C. Menzel, C. Rockstuhl, F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef]

Saenz, J. J.

Schmidt, F.

J. Pomplun, S. Burger, L. Zschiedrich, F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. B 244, 3419–3434 (2007).
[CrossRef]

Schmidt, M. K.

Schmitt, M.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403, 27–54 (2012).
[CrossRef]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Slobozhanyuk, A. P.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

Suarez-Lacalle, I.

Sugawara, Y.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef] [PubMed]

Taminiau, T. H.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[CrossRef] [PubMed]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Theil, F.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403, 27–54 (2012).
[CrossRef]

van Hulst, N. F.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[CrossRef] [PubMed]

Vogelgesang, R.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[CrossRef] [PubMed]

R. Vogelgesang, A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef]

Volpe, G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[CrossRef] [PubMed]

Weber, K.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403, 27–54 (2012).
[CrossRef]

Wegener, M.

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, M. Wegener, “Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas,” Phys. Rev. Lett. 109, 233902 (2012).
[CrossRef]

Weitz, R. T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Xu, Y.

Yang, Y.

L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee, J. H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127 (2010).
[CrossRef]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Zhang, C.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, H. Giessen, “Hole-mask colloidal nano-lithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6, 979–985 (2012).
[CrossRef]

Zhao, J.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, H. Giessen, “Hole-mask colloidal nano-lithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6, 979–985 (2012).
[CrossRef]

Zschiedrich, L.

J. Pomplun, S. Burger, L. Zschiedrich, F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. B 244, 3419–3434 (2007).
[CrossRef]

Zuloaga, J.

J. Zuloaga, P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef] [PubMed]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

ACS Nano (2)

I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[CrossRef] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, H. Giessen, “Hole-mask colloidal nano-lithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6, 979–985 (2012).
[CrossRef]

Anal. Bioanal. Chem. (1)

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403, 27–54 (2012).
[CrossRef]

Analyst (1)

R. Vogelgesang, A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst 135, 1175–1181 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett. 100, 201113 (2012).
[CrossRef]

J. Phys. Chem. C (1)

L. J. E. Anderson, K. M. Mayer, R. D. Fraleigh, Y. Yang, S. Lee, J. H. Hafner, “Quantitative measurements of individual gold nanoparticle scattering cross sections,” J. Phys. Chem. C 114, 11127 (2010).
[CrossRef]

Langmuir (1)

F. Moreno, P. Albella, M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29, 6715–6721 (2013).
[CrossRef] [PubMed]

Metamaterials (1)

S. Mühlig, C. Menzel, C. Rockstuhl, F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

Nano Lett. (5)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[CrossRef] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[CrossRef]

J. Zuloaga, P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[CrossRef] [PubMed]

A. M. Kern, O. J. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[CrossRef] [PubMed]

Nat. Commun. (2)

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[CrossRef] [PubMed]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[CrossRef] [PubMed]

Nat. Mater. (2)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. Novotny, N. v. Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (3)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, F. Lederer, “Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas,” Phys. Rev. B 86, 035404 (2012).
[CrossRef]

Barbara J. Messinger, K. U. v. Raben, R. K. Chang, P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649–657 (1981).
[CrossRef]

Phys. Rev. Lett. (3)

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
[CrossRef]

M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, M. Wegener, “Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas,” Phys. Rev. Lett. 109, 233902 (2012).
[CrossRef]

Phys. Stat. Sol. B (1)

J. Pomplun, S. Burger, L. Zschiedrich, F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Stat. Sol. B 244, 3419–3434 (2007).
[CrossRef]

Rep. Prog. Phys. (1)

P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[CrossRef] [PubMed]

Top. Appl. Phys. (1)

T. Okamoto, “Near-field spectral analysis of metallic beads,” Top. Appl. Phys. 81, 97–123 (2001).
[CrossRef]

Other (2)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Lorentzian dipole with resonance frequency ω0 = 500THz. (a) Normalized modulus |p(ω)|/max{|p(ω)|} vs. frequency and damping constant γ. The dashed blue line indicates the maximum of |p(ω)| for each γ. (b) Resonance shift in THz between the local field intensity at distance r and the near-field intensity vs. the damping constant γ and the inverse distance 1/r.

Fig. 2
Fig. 2

(a) Normalized scattering cross sections (black solid - full scattering cross section, red dotted - electric dipolar contribution, blue dashed - electric quadrupolar contribution, blue solid - scattering cross section normalized to ω4 displaying the expected near-field intensity), (b) Normalized intensity at different distances to the origin of the fictitious electric dipole.

Fig. 3
Fig. 3

Normalized, angularly averaged intensities and scattering cross sections for gold (a) silver (b) spheres with R = 110nm as function of frequency ω and inverse distance 1/r. The surface is normalized to the maximum intensity evoked by the dipole moment and indicated by the black dotted line. At large distances, i.e. small inverse distances, the normalized scattering cross sections and their respective multipolar contributions are shown as black solid (full scattering cross section), blue solid (electric dipolar), blue dashed (electric quadrupolar), blue dotted (electric octupolar) and red solid (magnetic dipolar) lines, where the overall scattering cross section nicely coincides with the angular averaged intensity.

Fig. 4
Fig. 4

Cylindrical silver (upper row) and gold (lower row) nano-antennas. The left figures (a) and (d) show the normalized electric dipolar contribution to scattering cross section Csca(a1m) (blue solid line), the full scattering cross section Csca normalized by ω4 (black solid line), the electric quadrupolar (red solid line), the electric octupolar (green solid line) as well as magnetic dipolar contributions (blue dash-dotted line) in arb. units. The central plots (b) and (e) show the spatially resolved frequency shift of the local (near-)field with respect to the far-field in THz, i.e. ω max ff ω max r. Note, that the maximum frequency shift close to the antenna agrees almost perfectly with the shift predicted in (a) and (d). The right plots (c) and (f) show spatial distribution of maximum local intensity (common logarithm scale) near the nano-antenna and at the frequencies indicated in (b) and (e), i.e. I ( ω max r , r ) representing a map of maximum interaction enhancement.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

p ( ω ) = f ω 0 2 ω 2 i γ ω E 0 | E 0 |
E ( r , ω ) = 1 4 π ε 0 { ω 2 ( n × p ) × n e i k r c 2 r + [ 3 n ( n p ) p ] ( 1 r 3 + i ω c r 2 ) e i k r }
I nf ( r , ω ) | E nf ( r , ω ) | 2 | p ( ω ) | 2
I ff ( r , ω ) | E ff ( r , ω ) | 2 ω 4 | p ( ω ) | 2 .
ω max r = { ω : max ω [ I ( ω , r ) ] }
ω max nf = { ω : max ω [ I ( ω , r 0 ) ] }
E sca ( r , ω ) = ω 2 c 2 l = 1 m = l l E l m [ a l m ( ω ) N l m ( r , ω ) + i b l m ( ω ) M l m ( r , ω ) ] ,
E l m = ( 1 ) m | E 0 | 2 π ( 2 l + 1 ) ( l m ) ! ( l + m ) ! ,
C sca = ω 2 c 2 l , m l ( l + 1 ) [ | a l m | 2 + | b l m | 2 ] = l , m C sca ( a l m ) + C sca ( b l m ) .
p z = c ω ε 0 12 π i a 10 .
C sca ( p z ) = ω 4 c 4 ε 0 2 6 π | p z | 2
ε = ε ω B 2 ω ( ω + i γ )

Metrics