Abstract

We present an expanded all-optical programmable logic array (O-PLA) using multi-input and multi-output canonical logic units (CLUs) generation. Based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF), two-input and three-input CLUs are simultaneously achieved in five different channels with an operation speed of 40 Gb/s. Clear temporal waveforms and wide open eye diagrams are successfully observed. The effectiveness of the scheme is validated by extinction ratio and optical signal-to-noise ratio measurements. The computing capacity, defined as the total amount of logic functions achieved by the O-PLA, is discussed in detail. For a three-input O-PLA, the computing capacity of the expanded CLUs-PLA is more than two times as large as that of the standard CLUs-PLA, and this multiple will increase to more than three and a half as the idlers are individually independent.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield, S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
    [CrossRef]
  2. A. E. Willner, S. Khaleghi, M. R. Chitgarha, O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [CrossRef]
  3. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–458 (2012).
    [CrossRef]
  4. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [CrossRef]
  5. J. Wang, S. R. Nuccio, J. Y. Yang, X. X. Wu, A. Bogoni, A. E. Willner, “High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals,” Opt. Lett. 37(7), 1139–1141 (2012).
    [CrossRef] [PubMed]
  6. D. Bo, S. Shimizu, W. Xu, N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
    [CrossRef]
  7. Y. Paquot, J. Schröder, B. J. Eggleton, “Reconfigurable linear combination of phase-and-amplitude coded optical signals,” Opt. Express 22(3), 2609–2619 (2014).
    [CrossRef] [PubMed]
  8. A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35(23), 3955–3957 (2010).
    [CrossRef] [PubMed]
  9. A. Malacarne, E. Lazzeri, V. Vercesi, M. Scaffardi, A. Bogoni, “Colorless all-optical sum and subtraction of phases for phase-shift keying signals based on a periodically poled lithium niobate waveguide,” Opt. Lett. 37(18), 3831–3833 (2012).
    [CrossRef] [PubMed]
  10. J. Wang, J. Y. Yang, X. X. Wu, O. F. Yilmaz, S. R. Nuccio, and A. E. Willner, “40-Gbaud/s (120-Gbit/s) Octal and 10-Gbaud/s (40-Gbit/s) Hexadecimal Simultaneous Addition and Subtraction Using 8PSK/16PSK and Highly Nonlinear Fiber,”in Proceedings of Optical Fiber Communication Conference, paper OThC3 (2011).
    [CrossRef]
  11. R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [CrossRef]
  12. C. Qiu, X. Ye, R. Soref, L. Yang, Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
    [CrossRef] [PubMed]
  13. W. Zhu, Y. Tian, L. Zhang, L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
    [CrossRef]
  14. Y. Tian, L. Zhang, L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
    [CrossRef]
  15. L. Yang, L. Zhang, C. Guo, J. Ding, “XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators,” Opt. Express 22(3), 2996–3012 (2014).
    [CrossRef] [PubMed]
  16. T. Chattopadhyay, J. N. Roy, “Design of SOA-MZI based all-optical programmable logic device (PLD),” Opt. Commun. 283(12), 2506–2517 (2010).
    [CrossRef]
  17. L. Lei, D. Jianji, Y. Yu, T. Sisi, Z. Xinliang, “All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers,” J. Lightwave Technol. 30(22), 3532–3539 (2012).
    [CrossRef]
  18. L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
    [CrossRef]
  19. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
    [CrossRef] [PubMed]
  20. M. Xiong, L. Lei, Y. Ding, B. Huang, H. Ou, C. Peucheret, X. Zhang, “All-optical 10 Gb/s AND logic gate in a silicon microring resonator,” Opt. Express 21(22), 25772–25779 (2013).
    [CrossRef] [PubMed]
  21. Q. Xu, R. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
    [CrossRef] [PubMed]
  22. E. Ciaramella, F. Curti, S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
    [CrossRef]
  23. G. W. Lu, K. S. Abedin, T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008).
    [CrossRef] [PubMed]
  24. Z. Lali-Dastjerdi, M. Galili, H. C. H. Mulvad, H. Hu, L. K. Oxenløwe, K. Rottwitt, C. Peucheret, “Parametric amplification and phase preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal,” Opt. Express 21(22), 25944–25953 (2013).
    [CrossRef] [PubMed]

2014 (3)

2013 (5)

W. Zhu, Y. Tian, L. Zhang, L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[CrossRef]

Y. Tian, L. Zhang, L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
[CrossRef]

D. Bo, S. Shimizu, W. Xu, N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[CrossRef]

M. Xiong, L. Lei, Y. Ding, B. Huang, H. Ou, C. Peucheret, X. Zhang, “All-optical 10 Gb/s AND logic gate in a silicon microring resonator,” Opt. Express 21(22), 25772–25779 (2013).
[CrossRef] [PubMed]

Z. Lali-Dastjerdi, M. Galili, H. C. H. Mulvad, H. Hu, L. K. Oxenløwe, K. Rottwitt, C. Peucheret, “Parametric amplification and phase preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal,” Opt. Express 21(22), 25944–25953 (2013).
[CrossRef] [PubMed]

2012 (7)

C. Qiu, X. Ye, R. Soref, L. Yang, Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
[CrossRef] [PubMed]

M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–458 (2012).
[CrossRef]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

J. Wang, S. R. Nuccio, J. Y. Yang, X. X. Wu, A. Bogoni, A. E. Willner, “High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals,” Opt. Lett. 37(7), 1139–1141 (2012).
[CrossRef] [PubMed]

A. Malacarne, E. Lazzeri, V. Vercesi, M. Scaffardi, A. Bogoni, “Colorless all-optical sum and subtraction of phases for phase-shift keying signals based on a periodically poled lithium niobate waveguide,” Opt. Lett. 37(18), 3831–3833 (2012).
[CrossRef] [PubMed]

L. Lei, D. Jianji, Y. Yu, T. Sisi, Z. Xinliang, “All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers,” J. Lightwave Technol. 30(22), 3532–3539 (2012).
[CrossRef]

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[CrossRef]

2011 (2)

2010 (4)

T. Chattopadhyay, J. N. Roy, “Design of SOA-MZI based all-optical programmable logic device (PLD),” Opt. Commun. 283(12), 2506–2517 (2010).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

H. J. Caulfield, S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35(23), 3955–3957 (2010).
[CrossRef] [PubMed]

2008 (1)

2001 (1)

E. Ciaramella, F. Curti, S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[CrossRef]

Abedin, K. S.

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

Andrekson, P. A.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Bakhtiari, Z.

Bo, D.

D. Bo, S. Shimizu, W. Xu, N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[CrossRef]

Bogoni, A.

Bogris, A.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield, S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

Chattopadhyay, T.

T. Chattopadhyay, J. N. Roy, “Design of SOA-MZI based all-optical programmable logic device (PLD),” Opt. Commun. 283(12), 2506–2517 (2010).
[CrossRef]

Chitgarha, M. R.

Choi, D. Y.

Ciaramella, E.

E. Ciaramella, F. Curti, S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[CrossRef]

Curti, F.

E. Ciaramella, F. Curti, S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[CrossRef]

Dasgupta, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Debbarma, S. K.

Ding, J.

Ding, Y.

Dolev, S.

H. J. Caulfield, S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

Dong, J.

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[CrossRef]

Eggleton, B. J.

Ellis, A. D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

Galili, M.

Gruner-Nielsen, L.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Guo, C.

He, H.

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[CrossRef]

Herstrom, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Hu, H.

Huang, B.

Huang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

Jakobsen, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Jianji, D.

Kakande, J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Khaleghi, S.

Lali-Dastjerdi, Z.

Lazzeri, E.

Lei, L.

Lu, G. W.

Lundstrom, C.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Luther-Davies, B.

Madden, S. J.

Malacarne, A.

Miyazaki, T.

Mulvad, H. C. H.

Nuccio, S.

Nuccio, S. R.

O’Gorman, J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Ou, H.

Oxenløwe, L. K.

Pant, R.

Paquot, Y.

Parmigiani, F.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Pelusi, M. D.

Petropoulos, P.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Peucheret, C.

Phelan, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Qiu, C.

Ren, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

Richardson, D. J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Rottwitt, K.

Roy, J. N.

T. Chattopadhyay, J. N. Roy, “Design of SOA-MZI based all-optical programmable logic device (PLD),” Opt. Commun. 283(12), 2506–2517 (2010).
[CrossRef]

Scaffardi, M.

Schröder, J.

Shimizu, S.

D. Bo, S. Shimizu, W. Xu, N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[CrossRef]

Sisi, T.

Sjodin, M.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Slavik, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Soref, R.

Sygletos, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Syvridis, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Taubenblatt, M. A.

Tian, Y.

W. Zhu, Y. Tian, L. Zhang, L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[CrossRef]

Y. Tian, L. Zhang, L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
[CrossRef]

Trillo, S.

E. Ciaramella, F. Curti, S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[CrossRef]

Tur, M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

Vercesi, V.

Vo, T. D.

Wada, N.

D. Bo, S. Shimizu, W. Xu, N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[CrossRef]

Wang, J.

J. Wang, S. R. Nuccio, J. Y. Yang, X. X. Wu, A. Bogoni, A. E. Willner, “High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals,” Opt. Lett. 37(7), 1139–1141 (2012).
[CrossRef] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

Weerasuriya, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Willner, A. E.

Wu, X.

Wu, X. X.

Xinliang, Z.

Xiong, M.

Xu, Q.

Xu, W.

D. Bo, S. Shimizu, W. Xu, N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[CrossRef]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

Yang, J. Y.

J. Wang, S. R. Nuccio, J. Y. Yang, X. X. Wu, A. Bogoni, A. E. Willner, “High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals,” Opt. Lett. 37(7), 1139–1141 (2012).
[CrossRef] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

Yang, L.

L. Yang, L. Zhang, C. Guo, J. Ding, “XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators,” Opt. Express 22(3), 2996–3012 (2014).
[CrossRef] [PubMed]

W. Zhu, Y. Tian, L. Zhang, L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[CrossRef]

Y. Tian, L. Zhang, L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
[CrossRef]

C. Qiu, X. Ye, R. Soref, L. Yang, Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
[CrossRef] [PubMed]

Ye, X.

Yilmaz, O. F.

Yu, Y.

L. Lei, D. Jianji, Y. Yu, T. Sisi, Z. Xinliang, “All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers,” J. Lightwave Technol. 30(22), 3532–3539 (2012).
[CrossRef]

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[CrossRef]

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

Zhang, L.

L. Yang, L. Zhang, C. Guo, J. Ding, “XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators,” Opt. Express 22(3), 2996–3012 (2014).
[CrossRef] [PubMed]

Y. Tian, L. Zhang, L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
[CrossRef]

W. Zhu, Y. Tian, L. Zhang, L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[CrossRef]

Zhang, X.

M. Xiong, L. Lei, Y. Ding, B. Huang, H. Ou, C. Peucheret, X. Zhang, “All-optical 10 Gb/s AND logic gate in a silicon microring resonator,” Opt. Express 21(22), 25772–25779 (2013).
[CrossRef] [PubMed]

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[CrossRef]

Zhang, Y.

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[CrossRef]

Zhu, W.

W. Zhu, Y. Tian, L. Zhang, L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[CrossRef]

Electron. Lett. (1)

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

W. Zhu, Y. Tian, L. Zhang, L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[CrossRef]

Y. Tian, L. Zhang, L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
[CrossRef]

D. Bo, S. Shimizu, W. Xu, N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[CrossRef]

E. Ciaramella, F. Curti, S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[CrossRef]

J. Lightwave Technol. (3)

Nat. Photonics (3)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

H. J. Caulfield, S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

Opt. Commun. (1)

T. Chattopadhyay, J. N. Roy, “Design of SOA-MZI based all-optical programmable logic device (PLD),” Opt. Commun. 283(12), 2506–2517 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Other (1)

J. Wang, J. Y. Yang, X. X. Wu, O. F. Yilmaz, S. R. Nuccio, and A. E. Willner, “40-Gbaud/s (120-Gbit/s) Octal and 10-Gbaud/s (40-Gbit/s) Hexadecimal Simultaneous Addition and Subtraction Using 8PSK/16PSK and Highly Nonlinear Fiber,”in Proceedings of Optical Fiber Communication Conference, paper OThC3 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Configuration diagram of CLUs-PLA.

Fig. 2
Fig. 2

A logic unit of the standard CLUs-PLA.

Fig. 3
Fig. 3

Operational principle of multi-input/output CLUs generation based on FWM, (a) schematic diagram, (b) spectra of CLUs distribution.

Fig. 4
Fig. 4

Experimental setup of simultaneous multi-input CLUs generation.

Fig. 5
Fig. 5

Measured spectra of CLUs at the output of HNLF.

Fig. 6
Fig. 6

Measured temporal waveforms and eye diagrams, (a) original data patterns, (b) CLUs at 1565.29 nm (channel AB), (c) CLUs at 1539.11 nm (channel AC1).

Fig. 7
Fig. 7

Measured extinction ratios and optical signal-to-noise ratios, (a) CLUs at 1565.29 nm (channel AB), (b) CLUs at 1539.11 nm (channel AC1).

Fig. 8
Fig. 8

Measured temporal waveforms and eye diagrams, (a) CLUs at 1541.34 nm (channel ABC1), (b) CLUs at 1561.51 nm (channel ABC2).

Fig. 9
Fig. 9

Measured extinction ratios and optical signal-to-noise ratios, (a) CLUs at 1541.34 nm (channel ABC1), (b) CLUs at 1561.51 nm (channel ABC2).

Fig. 10
Fig. 10

Standard three-input CLUs-PLA, (a) configuration diagram, (b) schematic packaged diagram.

Fig. 11
Fig. 11

Expanded three-input CLUs-PLA, (a) configuration diagram, (b) schematic packaged diagram.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ca p standard M n=1 2 N 1 C 2 N n =M( 2 2 N 2 )
Ca p expanded Q T , Q C , N' ( M Q T Q C n=1 2 N' 1 C 2 N' n ) = Q T , Q C , N' ( M Q T Q C ( 2 2 N' 2 ) )
Ca p standard_3 M( 2 2 3 2 )
Ca p expanded_3 M( 3×2×( 2 2 2 2 )+2×1×( 2 2 3 2 ) )
Ca p expanded_3 M( 6×2×( 2 2 2 2 )+3×1×( 2 2 3 2 ) )

Metrics