Abstract

We present an expanded all-optical programmable logic array (O-PLA) using multi-input and multi-output canonical logic units (CLUs) generation. Based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF), two-input and three-input CLUs are simultaneously achieved in five different channels with an operation speed of 40 Gb/s. Clear temporal waveforms and wide open eye diagrams are successfully observed. The effectiveness of the scheme is validated by extinction ratio and optical signal-to-noise ratio measurements. The computing capacity, defined as the total amount of logic functions achieved by the O-PLA, is discussed in detail. For a three-input O-PLA, the computing capacity of the expanded CLUs-PLA is more than two times as large as that of the standard CLUs-PLA, and this multiple will increase to more than three and a half as the idlers are individually independent.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Canonical logic units using bidirectional four-wave mixing in highly nonlinear fiber

W. C. Dong, J. Hou, Y. S. Kadhim, S. K. Tawfeeq, and X. L. Zhang
Photon. Res. 3(4) 164-167 (2015)

Field-programmable logic devices with optical input–output

Ted H. Szymanski, Martin Saint-Laurent, Victor Tyan, Albert Au, and Boonchuay Supmonchai
Appl. Opt. 39(5) 721-732 (2000)

40 Gb/s reconfigurable optical logic gates based on FWM in silicon waveguide

Jie Hou, Liao Chen, Wenchan Dong, and Xinliang Zhang
Opt. Express 24(3) 2701-2711 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
    [Crossref]
  2. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [Crossref]
  3. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–458 (2012).
    [Crossref]
  4. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  5. J. Wang, S. R. Nuccio, J. Y. Yang, X. X. Wu, A. Bogoni, and A. E. Willner, “High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals,” Opt. Lett. 37(7), 1139–1141 (2012).
    [Crossref] [PubMed]
  6. D. Bo, S. Shimizu, W. Xu, and N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
    [Crossref]
  7. Y. Paquot, J. Schröder, and B. J. Eggleton, “Reconfigurable linear combination of phase-and-amplitude coded optical signals,” Opt. Express 22(3), 2609–2619 (2014).
    [Crossref] [PubMed]
  8. A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35(23), 3955–3957 (2010).
    [Crossref] [PubMed]
  9. A. Malacarne, E. Lazzeri, V. Vercesi, M. Scaffardi, and A. Bogoni, “Colorless all-optical sum and subtraction of phases for phase-shift keying signals based on a periodically poled lithium niobate waveguide,” Opt. Lett. 37(18), 3831–3833 (2012).
    [Crossref] [PubMed]
  10. J. Wang, J. Y. Yang, X. X. Wu, O. F. Yilmaz, S. R. Nuccio, and A. E. Willner, “40-Gbaud/s (120-Gbit/s) Octal and 10-Gbaud/s (40-Gbit/s) Hexadecimal Simultaneous Addition and Subtraction Using 8PSK/16PSK and Highly Nonlinear Fiber,”in Proceedings of Optical Fiber Communication Conference, paper OThC3 (2011).
    [Crossref]
  11. R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [Crossref]
  12. C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
    [Crossref] [PubMed]
  13. W. Zhu, Y. Tian, L. Zhang, and L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
    [Crossref]
  14. Y. Tian, L. Zhang, and L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
    [Crossref]
  15. L. Yang, L. Zhang, C. Guo, and J. Ding, “XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators,” Opt. Express 22(3), 2996–3012 (2014).
    [Crossref] [PubMed]
  16. T. Chattopadhyay and J. N. Roy, “Design of SOA-MZI based all-optical programmable logic device (PLD),” Opt. Commun. 283(12), 2506–2517 (2010).
    [Crossref]
  17. L. Lei, D. Jianji, Y. Yu, T. Sisi, and Z. Xinliang, “All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers,” J. Lightwave Technol. 30(22), 3532–3539 (2012).
    [Crossref]
  18. L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, and X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
    [Crossref]
  19. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
    [Crossref] [PubMed]
  20. M. Xiong, L. Lei, Y. Ding, B. Huang, H. Ou, C. Peucheret, and X. Zhang, “All-optical 10 Gb/s AND logic gate in a silicon microring resonator,” Opt. Express 21(22), 25772–25779 (2013).
    [Crossref] [PubMed]
  21. Q. Xu and R. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
    [Crossref] [PubMed]
  22. E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
    [Crossref]
  23. G. W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008).
    [Crossref] [PubMed]
  24. Z. Lali-Dastjerdi, M. Galili, H. C. H. Mulvad, H. Hu, L. K. Oxenløwe, K. Rottwitt, and C. Peucheret, “Parametric amplification and phase preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal,” Opt. Express 21(22), 25944–25953 (2013).
    [Crossref] [PubMed]

2014 (3)

2013 (5)

M. Xiong, L. Lei, Y. Ding, B. Huang, H. Ou, C. Peucheret, and X. Zhang, “All-optical 10 Gb/s AND logic gate in a silicon microring resonator,” Opt. Express 21(22), 25772–25779 (2013).
[Crossref] [PubMed]

Z. Lali-Dastjerdi, M. Galili, H. C. H. Mulvad, H. Hu, L. K. Oxenløwe, K. Rottwitt, and C. Peucheret, “Parametric amplification and phase preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal,” Opt. Express 21(22), 25944–25953 (2013).
[Crossref] [PubMed]

D. Bo, S. Shimizu, W. Xu, and N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[Crossref]

W. Zhu, Y. Tian, L. Zhang, and L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[Crossref]

Y. Tian, L. Zhang, and L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
[Crossref]

2012 (7)

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, and X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–458 (2012).
[Crossref]

J. Wang, S. R. Nuccio, J. Y. Yang, X. X. Wu, A. Bogoni, and A. E. Willner, “High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals,” Opt. Lett. 37(7), 1139–1141 (2012).
[Crossref] [PubMed]

A. Malacarne, E. Lazzeri, V. Vercesi, M. Scaffardi, and A. Bogoni, “Colorless all-optical sum and subtraction of phases for phase-shift keying signals based on a periodically poled lithium niobate waveguide,” Opt. Lett. 37(18), 3831–3833 (2012).
[Crossref] [PubMed]

C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
[Crossref] [PubMed]

L. Lei, D. Jianji, Y. Yu, T. Sisi, and Z. Xinliang, “All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers,” J. Lightwave Technol. 30(22), 3532–3539 (2012).
[Crossref]

2011 (2)

2010 (4)

A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, and A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35(23), 3955–3957 (2010).
[Crossref] [PubMed]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

T. Chattopadhyay and J. N. Roy, “Design of SOA-MZI based all-optical programmable logic device (PLD),” Opt. Commun. 283(12), 2506–2517 (2010).
[Crossref]

2008 (1)

2001 (1)

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

Abedin, K. S.

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Andrekson, P. A.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Bakhtiari, Z.

Bo, D.

D. Bo, S. Shimizu, W. Xu, and N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[Crossref]

Bogoni, A.

Bogris, A.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Caulfield, H. J.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

Chattopadhyay, T.

T. Chattopadhyay and J. N. Roy, “Design of SOA-MZI based all-optical programmable logic device (PLD),” Opt. Commun. 283(12), 2506–2517 (2010).
[Crossref]

Chitgarha, M. R.

Choi, D. Y.

Ciaramella, E.

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

Curti, F.

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

Dasgupta, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Debbarma, S. K.

Ding, J.

Ding, Y.

Dolev, S.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dong, J.

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, and X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[Crossref]

Eggleton, B. J.

Ellis, A. D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Galili, M.

Gruner-Nielsen, L.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Guo, C.

He, H.

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, and X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[Crossref]

Herstrom, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Hu, H.

Huang, B.

Huang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Jakobsen, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Jianji, D.

Kakande, J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Khaleghi, S.

Lali-Dastjerdi, Z.

Lazzeri, E.

Lei, L.

Lu, G. W.

Lundstrom, C.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Luther-Davies, B.

Madden, S. J.

Malacarne, A.

Miyazaki, T.

Mulvad, H. C. H.

Nuccio, S.

Nuccio, S. R.

O’Gorman, J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Ou, H.

Oxenløwe, L. K.

Pant, R.

Paquot, Y.

Parmigiani, F.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Pelusi, M. D.

Petropoulos, P.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Peucheret, C.

Phelan, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Qiu, C.

Ren, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Richardson, D. J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Rottwitt, K.

Roy, J. N.

T. Chattopadhyay and J. N. Roy, “Design of SOA-MZI based all-optical programmable logic device (PLD),” Opt. Commun. 283(12), 2506–2517 (2010).
[Crossref]

Scaffardi, M.

Schröder, J.

Shimizu, S.

D. Bo, S. Shimizu, W. Xu, and N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[Crossref]

Sisi, T.

Sjodin, M.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Slavik, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Soref, R.

Sygletos, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Syvridis, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Taubenblatt, M. A.

Tian, Y.

Y. Tian, L. Zhang, and L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
[Crossref]

W. Zhu, Y. Tian, L. Zhang, and L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[Crossref]

Trillo, S.

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

Tur, M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Vercesi, V.

Vo, T. D.

Wada, N.

D. Bo, S. Shimizu, W. Xu, and N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[Crossref]

Wang, J.

J. Wang, S. R. Nuccio, J. Y. Yang, X. X. Wu, A. Bogoni, and A. E. Willner, “High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals,” Opt. Lett. 37(7), 1139–1141 (2012).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Weerasuriya, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Willner, A. E.

Wu, X.

Wu, X. X.

Xinliang, Z.

Xiong, M.

Xu, Q.

Xu, W.

D. Bo, S. Shimizu, W. Xu, and N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[Crossref]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Wang, S. R. Nuccio, J. Y. Yang, X. X. Wu, A. Bogoni, and A. E. Willner, “High-speed addition/subtraction/complement/doubling of quaternary numbers using optical nonlinearities and DQPSK signals,” Opt. Lett. 37(7), 1139–1141 (2012).
[Crossref] [PubMed]

Yang, L.

L. Yang, L. Zhang, C. Guo, and J. Ding, “XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators,” Opt. Express 22(3), 2996–3012 (2014).
[Crossref] [PubMed]

W. Zhu, Y. Tian, L. Zhang, and L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[Crossref]

Y. Tian, L. Zhang, and L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
[Crossref]

C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
[Crossref] [PubMed]

Ye, X.

Yilmaz, O. F.

Yu, Y.

L. Lei, D. Jianji, Y. Yu, T. Sisi, and Z. Xinliang, “All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers,” J. Lightwave Technol. 30(22), 3532–3539 (2012).
[Crossref]

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, and X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[Crossref]

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhang, L.

L. Yang, L. Zhang, C. Guo, and J. Ding, “XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators,” Opt. Express 22(3), 2996–3012 (2014).
[Crossref] [PubMed]

W. Zhu, Y. Tian, L. Zhang, and L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[Crossref]

Y. Tian, L. Zhang, and L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
[Crossref]

Zhang, X.

M. Xiong, L. Lei, Y. Ding, B. Huang, H. Ou, C. Peucheret, and X. Zhang, “All-optical 10 Gb/s AND logic gate in a silicon microring resonator,” Opt. Express 21(22), 25772–25779 (2013).
[Crossref] [PubMed]

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, and X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[Crossref]

Zhang, Y.

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, and X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[Crossref]

Zhu, W.

W. Zhu, Y. Tian, L. Zhang, and L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[Crossref]

Electron. Lett. (1)

L. Lei, J. Dong, Y. Zhang, H. He, Y. Yu, and X. Zhang, “Reconfigurable photonic full-adder and full-subtractor based on three-input XOR gate and logic minterms,” Electron. Lett. 48(7), 399–400 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (4)

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

D. Bo, S. Shimizu, W. Xu, and N. Wada, “Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 25(1), 91–93 (2013).
[Crossref]

W. Zhu, Y. Tian, L. Zhang, and L. Yang, “Electro-optic directed XNOR logic gate based on U-shaped waveguides and microring resonators,” IEEE Photon. Technol. Lett. 25(14), 1305–1308 (2013).
[Crossref]

Y. Tian, L. Zhang, and L. Yang, “Directed optical XOR/XNOR logic gates based on U-to-U shaped waveguides and two cascaded microring resonators,” IEEE Photon. Technol. Lett. 25(1), 18–21 (2013).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (3)

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Opt. Commun. (1)

T. Chattopadhyay and J. N. Roy, “Design of SOA-MZI based all-optical programmable logic device (PLD),” Opt. Commun. 283(12), 2506–2517 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Other (1)

J. Wang, J. Y. Yang, X. X. Wu, O. F. Yilmaz, S. R. Nuccio, and A. E. Willner, “40-Gbaud/s (120-Gbit/s) Octal and 10-Gbaud/s (40-Gbit/s) Hexadecimal Simultaneous Addition and Subtraction Using 8PSK/16PSK and Highly Nonlinear Fiber,”in Proceedings of Optical Fiber Communication Conference, paper OThC3 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Configuration diagram of CLUs-PLA.

Fig. 2
Fig. 2

A logic unit of the standard CLUs-PLA.

Fig. 3
Fig. 3

Operational principle of multi-input/output CLUs generation based on FWM, (a) schematic diagram, (b) spectra of CLUs distribution.

Fig. 4
Fig. 4

Experimental setup of simultaneous multi-input CLUs generation.

Fig. 5
Fig. 5

Measured spectra of CLUs at the output of HNLF.

Fig. 6
Fig. 6

Measured temporal waveforms and eye diagrams, (a) original data patterns, (b) CLUs at 1565.29 nm (channel AB), (c) CLUs at 1539.11 nm (channel AC1).

Fig. 7
Fig. 7

Measured extinction ratios and optical signal-to-noise ratios, (a) CLUs at 1565.29 nm (channel AB), (b) CLUs at 1539.11 nm (channel AC1).

Fig. 8
Fig. 8

Measured temporal waveforms and eye diagrams, (a) CLUs at 1541.34 nm (channel ABC1), (b) CLUs at 1561.51 nm (channel ABC2).

Fig. 9
Fig. 9

Measured extinction ratios and optical signal-to-noise ratios, (a) CLUs at 1541.34 nm (channel ABC1), (b) CLUs at 1561.51 nm (channel ABC2).

Fig. 10
Fig. 10

Standard three-input CLUs-PLA, (a) configuration diagram, (b) schematic packaged diagram.

Fig. 11
Fig. 11

Expanded three-input CLUs-PLA, (a) configuration diagram, (b) schematic packaged diagram.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ca p standard M n=1 2 N 1 C 2 N n =M( 2 2 N 2 )
Ca p expanded Q T , Q C , N' ( M Q T Q C n=1 2 N' 1 C 2 N' n ) = Q T , Q C , N' ( M Q T Q C ( 2 2 N' 2 ) )
Ca p standard_3 M( 2 2 3 2 )
Ca p expanded_3 M( 3×2×( 2 2 2 2 )+2×1×( 2 2 3 2 ) )
Ca p expanded_3 M( 6×2×( 2 2 2 2 )+3×1×( 2 2 3 2 ) )

Metrics