Abstract

Mode competition of two-lasing modes at the photonic bandedge from dye-doped cholesteric liquid crystal lasing was studied by the alternation of temperatures. The increase or decrease of the wavelengths from photonic bandedges versus the alternation of temperature is attributed to the variation of helical twist power (HTP) and thus it shows the completely different result by choosing two of different nematic liquid crystals (MDA-981602 and MDA-3970). At certain temperature, the intensity contrast and slope efficiency between long and short emission lasing peaks were dominated from the experienced gain or loss of laser for the position of the photonic bandedge. By the linear combination of these two lasing modes with different emission wavelengths and intensity contrast at distinct temperature, the wide tuning of the output colors can be revealed from the CIE chromaticity diagram and thus it has opportunity to be used in the display technology in the near future.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Y. Huang, K. Y. Fu, K. Y. Lo, M. S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11(6), 560–565 (2003).
    [CrossRef] [PubMed]
  2. F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
    [CrossRef]
  3. M. Iwamoto, C.-X. Wu, O.-Y. Zhong-can, “Separation of chiral phases by compression: kinetic localization of the enantiomers in a monolayer of racemic amphiphiles viewed as mixing cholesteric liquid crystals,” Chem. Phys. Lett. 285(5–6), 306–312 (1998).
    [CrossRef]
  4. H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
    [CrossRef] [PubMed]
  5. J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [CrossRef]
  6. V. I. Kopp, B. Fan, H. K. M. Vithana, A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [CrossRef] [PubMed]
  7. B. Taheri, A. F. Munoz, P. Pallffy-Muhoray, R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358(1), 73–82 (2001).
    [CrossRef]
  8. J. H. Lin, J. L. Jhu, S. S. Jyu, T.-C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
    [CrossRef]
  9. S.-H. Lin, C.-R. Lee, “Novel dye-doped cholesteric liquid crystal cone lasers with various birefringences and associated tunabilities of lasing feature and performance,” Opt. Express 19(19), 18199–18206 (2011).
    [CrossRef] [PubMed]
  10. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
    [CrossRef]
  11. S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
    [CrossRef]
  12. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2003).
  13. K. Funamoto, M. Ozaki, K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(12B), L1523–L1525 (2003).
    [CrossRef]
  14. Y. Huang, Y. Zhou, C. Doyle, S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
    [CrossRef] [PubMed]
  15. S. M. Morris, A. D. Ford, M. N. Pivnenko, H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
    [CrossRef]
  16. J.-H. Lin, J.-L. Jhu, S. S. Jyu, T. C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
    [CrossRef]
  17. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
    [CrossRef] [PubMed]
  18. G. Gottarelli, G. P. Spada, “Induced cholesteric mesophases – origin and applications,” Mol. Cryst. Liq. Cryst. 123(1), 377–388 (1985).
    [CrossRef]
  19. J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
    [CrossRef]
  20. J. Li, S. Gauzia, S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
    [CrossRef] [PubMed]

2013 (2)

J. H. Lin, J. L. Jhu, S. S. Jyu, T.-C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

J.-H. Lin, J.-L. Jhu, S. S. Jyu, T. C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

2011 (1)

2010 (1)

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

S. M. Morris, A. D. Ford, M. N. Pivnenko, H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

2004 (2)

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

J. Li, S. Gauzia, S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[CrossRef] [PubMed]

2003 (4)

S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2003).

K. Funamoto, M. Ozaki, K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(12B), L1523–L1525 (2003).
[CrossRef]

C. Y. Huang, K. Y. Fu, K. Y. Lo, M. S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11(6), 560–565 (2003).
[CrossRef] [PubMed]

2001 (2)

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

B. Taheri, A. F. Munoz, P. Pallffy-Muhoray, R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358(1), 73–82 (2001).
[CrossRef]

1998 (2)

M. Iwamoto, C.-X. Wu, O.-Y. Zhong-can, “Separation of chiral phases by compression: kinetic localization of the enantiomers in a monolayer of racemic amphiphiles viewed as mixing cholesteric liquid crystals,” Chem. Phys. Lett. 285(5–6), 306–312 (1998).
[CrossRef]

V. I. Kopp, B. Fan, H. K. M. Vithana, A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
[CrossRef] [PubMed]

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

1985 (1)

G. Gottarelli, G. P. Spada, “Induced cholesteric mesophases – origin and applications,” Mol. Cryst. Liq. Cryst. 123(1), 377–388 (1985).
[CrossRef]

Araoka, F.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[CrossRef] [PubMed]

Barna, V.

Bartolino, R.

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Brugioni, S.

J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Chen, C.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2003).

Chen, C.-W.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2003).

Chen, Y.-J.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2003).

Choi, H.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[CrossRef] [PubMed]

Coles, H. J.

S. M. Morris, A. D. Ford, M. N. Pivnenko, H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

De Luca, A.

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Doyle, C.

Du, F.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Faetti, S.

J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Fan, B.

Ferjani, S.

Finkelmann, H.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Ford, A. D.

S. M. Morris, A. D. Ford, M. N. Pivnenko, H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

Fu, K. Y.

Fuh, A. Y.-G.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2003).

Funamoto, K.

K. Funamoto, M. Ozaki, K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(12B), L1523–L1525 (2003).
[CrossRef]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

Gauza, S.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Gauzia, S.

Genack, A. Z.

Gottarelli, G.

G. Gottarelli, G. P. Spada, “Induced cholesteric mesophases – origin and applications,” Mol. Cryst. Liq. Cryst. 123(1), 377–388 (1985).
[CrossRef]

Huang, C. Y.

Huang, Y.

Ishikawa, K.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[CrossRef] [PubMed]

Iwamoto, M.

M. Iwamoto, C.-X. Wu, O.-Y. Zhong-can, “Separation of chiral phases by compression: kinetic localization of the enantiomers in a monolayer of racemic amphiphiles viewed as mixing cholesteric liquid crystals,” Chem. Phys. Lett. 285(5–6), 306–312 (1998).
[CrossRef]

Jau, H.-C.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2003).

Jhu, J. L.

J. H. Lin, J. L. Jhu, S. S. Jyu, T.-C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

Jhu, J.-L.

J.-H. Lin, J.-L. Jhu, S. S. Jyu, T. C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

Jyu, S. S.

J.-H. Lin, J.-L. Jhu, S. S. Jyu, T. C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

J. H. Lin, J. L. Jhu, S. S. Jyu, T.-C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

Kim, J.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[CrossRef] [PubMed]

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Kopp, V. I.

Lai, Y.

J. H. Lin, J. L. Jhu, S. S. Jyu, T.-C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

J.-H. Lin, J.-L. Jhu, S. S. Jyu, T. C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

Lee, C.-R.

Li, J.

J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

J. Li, S. Gauzia, S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[CrossRef] [PubMed]

Lin, J. H.

J. H. Lin, J. L. Jhu, S. S. Jyu, T.-C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

Lin, J.-H.

J.-H. Lin, J.-L. Jhu, S. S. Jyu, T. C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

Lin, S.-H.

Lin, T. C.

J.-H. Lin, J.-L. Jhu, S. S. Jyu, T. C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

Lin, T.-C.

J. H. Lin, J. L. Jhu, S. S. Jyu, T.-C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

Lin, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2003).

Lo, K. Y.

Lu, Y. Q.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

Meucci, R.

J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Morris, S. M.

S. M. Morris, A. D. Ford, M. N. Pivnenko, H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

Munoz, A.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Munoz, A. F.

B. Taheri, A. F. Munoz, P. Pallffy-Muhoray, R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358(1), 73–82 (2001).
[CrossRef]

Nishimura, S.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[CrossRef] [PubMed]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

Ozaki, M.

K. Funamoto, M. Ozaki, K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(12B), L1523–L1525 (2003).
[CrossRef]

Palffy-Muhoray, P.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Pallffy-Muhoray, P.

B. Taheri, A. F. Munoz, P. Pallffy-Muhoray, R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358(1), 73–82 (2001).
[CrossRef]

Pivnenko, M. N.

S. M. Morris, A. D. Ford, M. N. Pivnenko, H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

Ren, H. W.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Scaramuzza, N.

Spada, G. P.

G. Gottarelli, G. P. Spada, “Induced cholesteric mesophases – origin and applications,” Mol. Cryst. Liq. Cryst. 123(1), 377–388 (1985).
[CrossRef]

Strangi, G.

Taheri, B.

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

B. Taheri, A. F. Munoz, P. Pallffy-Muhoray, R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358(1), 73–82 (2001).
[CrossRef]

Takezoe, H.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[CrossRef] [PubMed]

Toyooka, T.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[CrossRef] [PubMed]

Tsai, M. S.

Twieg, R.

B. Taheri, A. F. Munoz, P. Pallffy-Muhoray, R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358(1), 73–82 (2001).
[CrossRef]

Versace, C.

Vithana, H. K. M.

Wei, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2003).

Wu, C.-X.

M. Iwamoto, C.-X. Wu, O.-Y. Zhong-can, “Separation of chiral phases by compression: kinetic localization of the enantiomers in a monolayer of racemic amphiphiles viewed as mixing cholesteric liquid crystals,” Chem. Phys. Lett. 285(5–6), 306–312 (1998).
[CrossRef]

Wu, J. W.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[CrossRef] [PubMed]

Wu, S. T.

Y. Huang, Y. Zhou, C. Doyle, S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
[CrossRef] [PubMed]

J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

Wu, S.-T.

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

Yoshino, K.

K. Funamoto, M. Ozaki, K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(12B), L1523–L1525 (2003).
[CrossRef]

Zhong-can, O.-Y.

M. Iwamoto, C.-X. Wu, O.-Y. Zhong-can, “Separation of chiral phases by compression: kinetic localization of the enantiomers in a monolayer of racemic amphiphiles viewed as mixing cholesteric liquid crystals,” Chem. Phys. Lett. 285(5–6), 306–312 (1998).
[CrossRef]

Zhou, Y.

Adv. Mater. (2)

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal Bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[CrossRef] [PubMed]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13(14), 1069–1072 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[CrossRef]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2003).

Chem. Phys. Lett. (1)

M. Iwamoto, C.-X. Wu, O.-Y. Zhong-can, “Separation of chiral phases by compression: kinetic localization of the enantiomers in a monolayer of racemic amphiphiles viewed as mixing cholesteric liquid crystals,” Chem. Phys. Lett. 285(5–6), 306–312 (1998).
[CrossRef]

J. Appl. Phys. (3)

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (2)

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43(10), 7083–7086 (2004).
[CrossRef]

K. Funamoto, M. Ozaki, K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(12B), L1523–L1525 (2003).
[CrossRef]

Laser Phys. (2)

J.-H. Lin, J.-L. Jhu, S. S. Jyu, T. C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

J. H. Lin, J. L. Jhu, S. S. Jyu, T.-C. Lin, Y. Lai, “Characteristics of a low repetition rate passively mode-locked Yb-doped fiber laser in an all-normal dispersion cavity,” Laser Phys. 23(2), 025103 (2013).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

G. Gottarelli, G. P. Spada, “Induced cholesteric mesophases – origin and applications,” Mol. Cryst. Liq. Cryst. 123(1), 377–388 (1985).
[CrossRef]

B. Taheri, A. F. Munoz, P. Pallffy-Muhoray, R. Twieg, “Low threshold lasing in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 358(1), 73–82 (2001).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic setup for bandedge lasing in DDCLC laser. Inset shows the alignment of the LC molecule in the cell and the selective reflection of light by the CLC.

Fig. 2
Fig. 2

The time trace of the output from DDCLC (blue squares) laser, Q-switching Nd:YAG laser (black circles) and the fitting curve(red line).

Fig. 3
Fig. 3

The measured lasing spectrum (green curve) and transmission spectrum (blue curve) and the corresponding output beam (inset) for sample I with temperature at (a) 11°C, (b) 17°C, (c) 21°C and (d) 27°C. The red curve shows the fluorescent spectrum of PM597.

Fig. 4
Fig. 4

The output intensity versus pump energy of DDCLC for LWL peak (blue squares) and SWL peaks (red circles) at (a) 11°C and (b) 17°C (Solid lines are linear fitting lines).

Fig. 5
Fig. 5

The variation of wavelength for LWL (red solid squares) and SWL (red open circles) and estimated helical twist power (blue triangles) versus temperature for sample 1.

Fig. 6
Fig. 6

The dependence of wavelengths for LWL (red squares) and SWL (black circles) on concentration of S811 into MDA-981602.

Fig. 7
Fig. 7

The measured lasing spectrum (green curve) and transmission spectrum (blue curve) and corresponding output pattern (inset) for sample II with temperature at (a) 15°C, (b) 30°C, (c) 40°C and (d) 45°C. The red curve shows the fluorescent spectrum of PM597.

Fig. 8
Fig. 8

The variation of wavelength for LWL (red solid squares) and SWL (red open circles) and estimated helical twist power (blue solid triangles) versus temperature for sample II.

Fig. 9
Fig. 9

(a) Photography of the reflection color from DDCLC at different temperature using white light source. The reflection light from simple I (MDA 981602) with temperature at (b) 11°C, (c) 17°C, and (d) 27°C. The reflection light from sample II (MDA 3970) with temperature at (e) 15°C, (f) 30°C, and (g) 45°C.

Fig. 10
Fig. 10

The calculated CIE chromaticity diagram for lasing emission peak from sample I (solid symbols) and II (open symbols) under different temperatures.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ L = n e P,
λ S = n o P,
P=1/(HTP×C) ,

Metrics