Abstract

A compact wavelength band-pass filter based on metal-insulator-metal (MIM) nanodisk cavity is proposed and numerically investigated by using Finite-Difference Time-Domain (FDTD) simulations. It is found that the transmission characteristics of the filter can be easily adjusted by changing the geometrical parameters of the radius of the nanodisk and coupling distance between the nanodisk and waveguide. By extending the length of input/output waveguides, the filter shows the resonant mode inhibition function. Basing on this characteristic, a two-port wavelength demultiplexer is designed, which can separate resonant modes inside the nanodisk with high transmission up to 70%. The waveguide filter may become a potential application for the design of devices in highly integrated optical circuits.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005).
    [Crossref] [PubMed]
  3. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
    [Crossref]
  4. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
    [Crossref]
  5. S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12(15), 3422–3427 (2004).
    [Crossref] [PubMed]
  6. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
    [Crossref]
  7. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
    [Crossref] [PubMed]
  8. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
    [Crossref] [PubMed]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [Crossref] [PubMed]
  10. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [Crossref] [PubMed]
  11. C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30(18), 2357–2359 (2005).
    [Crossref] [PubMed]
  12. K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. Journal of Optics,” J. Opt. 14(7), 075001 (2012).
    [Crossref]
  13. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
    [Crossref] [PubMed]
  14. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19(4), 3513–3518 (2011).
    [Crossref] [PubMed]
  15. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
    [Crossref] [PubMed]
  16. I. Chremmos, “Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal,” J. Opt. Soc. Am. A 26(12), 2623–2633 (2009).
    [Crossref] [PubMed]
  17. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010).
    [Crossref] [PubMed]
  18. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36(8), 1500–1502 (2011).
    [Crossref] [PubMed]
  19. F. Moharrami and M. S. Abrishamian, “Plasmonic multi-channel filters with separately tunable pass-bands,” J. Opt. 15(7), 075001 (2013).
    [Crossref]
  20. F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express 19(6), 4848–4855 (2011).
    [Crossref] [PubMed]
  21. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008).
    [Crossref] [PubMed]
  22. J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
    [Crossref]
  23. V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
    [Crossref]
  24. Z. Yu, R. Liang, P. Chen, Q. Huang, T. Huang, and X. Xu, “Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide,” Plasmonics 7(4), 603–607 (2012).
    [Crossref]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  26. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
    [Crossref] [PubMed]
  27. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
    [Crossref]
  28. X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. A 27(12), 2707–2713 (2010).
    [Crossref]

2013 (2)

F. Moharrami and M. S. Abrishamian, “Plasmonic multi-channel filters with separately tunable pass-bands,” J. Opt. 15(7), 075001 (2013).
[Crossref]

V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
[Crossref]

2012 (3)

Z. Yu, R. Liang, P. Chen, Q. Huang, T. Huang, and X. Xu, “Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide,” Plasmonics 7(4), 603–607 (2012).
[Crossref]

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. Journal of Optics,” J. Opt. 14(7), 075001 (2012).
[Crossref]

2011 (4)

2010 (3)

2009 (2)

2008 (1)

2007 (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

2006 (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

2005 (5)

2004 (3)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1991 (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abaslou, S.

V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
[Crossref]

Abrishamian, M. S.

V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
[Crossref]

F. Moharrami and M. S. Abrishamian, “Plasmonic multi-channel filters with separately tunable pass-bands,” J. Opt. 15(7), 075001 (2013).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Badenes, G.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bolivar, P. H.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Chen, P.

Z. Yu, R. Liang, P. Chen, Q. Huang, T. Huang, and X. Xu, “Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide,” Plasmonics 7(4), 603–607 (2012).
[Crossref]

Chremmos, I.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Deng, Q.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Dong, J. W.

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

Du, C.

Duan, L.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Enoch, S.

Ford, G. W.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[Crossref]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

Gao, H.

Gong, Y.

Gray, S. K.

Guo, Y.

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. Journal of Optics,” J. Opt. 14(7), 075001 (2012).
[Crossref]

Guo, Z.

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. Journal of Optics,” J. Opt. 14(7), 075001 (2012).
[Crossref]

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

He, M. D.

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Hu, F.

Huang, Q.

Z. Yu, R. Liang, P. Chen, Q. Huang, T. Huang, and X. Xu, “Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide,” Plasmonics 7(4), 603–607 (2012).
[Crossref]

Huang, T.

Z. Yu, R. Liang, P. Chen, Q. Huang, T. Huang, and X. Xu, “Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide,” Plasmonics 7(4), 603–607 (2012).
[Crossref]

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Huang, W. Q.

Huang, X.

X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. A 27(12), 2707–2713 (2010).
[Crossref]

Huang, X. G.

Janke, C.

Jin, X.

X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. A 27(12), 2707–2713 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Kurz, H.

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Lee, T. W.

Liang, R.

Z. Yu, R. Liang, P. Chen, Q. Huang, T. Huang, and X. Xu, “Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide,” Plasmonics 7(4), 603–607 (2012).
[Crossref]

Lin, X.

Liu, J. Q.

Liu, X.

Lu, H.

Luo, B.

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. Journal of Optics,” J. Opt. 14(7), 075001 (2012).
[Crossref]

Luo, X.

Lv, Y.

Mao, D.

Mei, X.

X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. A 27(12), 2707–2713 (2010).
[Crossref]

Moharrami, F.

F. Moharrami and M. S. Abrishamian, “Plasmonic multi-channel filters with separately tunable pass-bands,” J. Opt. 15(7), 075001 (2013).
[Crossref]

Nezhad, V. F.

V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
[Crossref]

Pan, W.

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. Journal of Optics,” J. Opt. 14(7), 075001 (2012).
[Crossref]

Quidant, R.

Rivas, J. G.

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Shi, H.

Tan, J. X.

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

Tao, J.

X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. A 27(12), 2707–2713 (2010).
[Crossref]

J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010).
[Crossref] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[Crossref] [PubMed]

Wang, C.

Wang, D.

Wang, G.

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[Crossref] [PubMed]

Wang, H. Z.

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
[Crossref] [PubMed]

Wang, L.

Wang, L. L.

Wang, T. B.

Weber, W. H.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[Crossref]

Wen, K.

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. Journal of Optics,” J. Opt. 14(7), 075001 (2012).
[Crossref]

Wen, S.

Wen, X. W.

Xie, Y. B.

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

Xu, X.

Z. Yu, R. Liang, P. Chen, Q. Huang, T. Huang, and X. Xu, “Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide,” Plasmonics 7(4), 603–607 (2012).
[Crossref]

Yan, L.

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. Journal of Optics,” J. Opt. 14(7), 075001 (2012).
[Crossref]

Yao, H.

Yi, H.

Yin, C. P.

Yu, Z.

Z. Yu, R. Liang, P. Chen, Q. Huang, T. Huang, and X. Xu, “Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide,” Plasmonics 7(4), 603–607 (2012).
[Crossref]

Zhou, Z.

Zhu, J.

X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. A 27(12), 2707–2713 (2010).
[Crossref]

Zhu, J. H.

Zhu, Y.

X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. A 27(12), 2707–2713 (2010).
[Crossref]

Zou, B. S.

Appl. Phys. Lett. (1)

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[Crossref]

J. Opt. (3)

K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, “Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. Journal of Optics,” J. Opt. 14(7), 075001 (2012).
[Crossref]

F. Moharrami and M. S. Abrishamian, “Plasmonic multi-channel filters with separately tunable pass-bands,” J. Opt. 15(7), 075001 (2013).
[Crossref]

V. F. Nezhad, S. Abaslou, and M. S. Abrishamian, “Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks,” J. Opt. 15(5), 055007 (2013).
[Crossref]

J. Opt. Soc. Am. A (2)

X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. A 27(12), 2707–2713 (2010).
[Crossref]

I. Chremmos, “Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal,” J. Opt. Soc. Am. A 26(12), 2623–2633 (2009).
[Crossref] [PubMed]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (9)

T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005).
[Crossref] [PubMed]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
[Crossref] [PubMed]

S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12(15), 3422–3427 (2004).
[Crossref] [PubMed]

J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010).
[Crossref] [PubMed]

T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
[Crossref] [PubMed]

G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19(4), 3513–3518 (2011).
[Crossref] [PubMed]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
[Crossref] [PubMed]

F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express 19(6), 4848–4855 (2011).
[Crossref] [PubMed]

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. B (2)

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Plasmonics (2)

Z. Yu, R. Liang, P. Chen, Q. Huang, T. Huang, and X. Xu, “Integrated Tunable Optofluidics Optical Filter Based on MIM Side-Coupled-Cavity Waveguide,” Plasmonics 7(4), 603–607 (2012).
[Crossref]

J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, “Flat-top transmission band in periodic plasmonic ring resonators,” Plasmonics 7(3), 435–439 (2012).
[Crossref]

Proc. IEEE (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The schematic diagram of nanodisk filter (b) The transmission spectrum of the nanodisk filter with r = 410nm, d = 8nm, t = 50nm.

Fig. 2
Fig. 2

(a) Transmission spectra about different radii of the nanodisk cavity with d = 8nm, t = 50nm. (b) Relationship between peak resonance wavelengths and the radius of the cavity.

Fig. 3
Fig. 3

(a) Transmission spectra about different distance between the boundaries of the waveguides and the cavity d with r = 410, t = 50nm. (b) Relationship between the peak resonance wavelengths and the distance of d.

Fig. 4
Fig. 4

The schematic diagram of an asymmetric nanodisk filter with d = 8nm, r = 410nm, and t = 50nm.

Fig. 5
Fig. 5

(a) Transmission spectra of different length of L from 0nm to 50nm. (b) Transmittance contrast image between 0nm and 135nm of length of L.

Fig. 6
Fig. 6

Magnetic fields of the band-pass filter with inhibiting structure for monochromatic light at different wavelengths, (a) λ = 956nm, (b) λ = 1550nm, and all geometric parameters are the same as used in Fig. 5(a).

Fig. 7
Fig. 7

(a) Schematic diagram of a 1 × 2 wavelength demultiplexing structure based on nanodisk cavity. (b) The transmission spectra of a 1 × 2 wavelength demultiplexing structure with d = 8nm, r = 410nm, and t = 50nm.

Fig. 8
Fig. 8

Magnetic fields of the 1 × 2 wavelength demultiplexing schematic diagram for monochromatic light at different wavelengths, (a) λ = 956nm, (b) λ = 1550nm, and all geometric parameters are the same as used in Fig. 5(a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε m (ω)= ε ω D 2 ω 2 +i γ D ω m=1 2 g Lm ω Lm 2 Δε ω 2 ω Lm 2 +i2 γ Lm ω .
k d H n (1)' ( k m r) H n (1) ( k m r) = k m J n ' ( k d r) J n ( k d r) .
T= ( 1 τ w ) 2 (ω ω 0 ) 2 + ( 1 τ w + 1 τ i ) 2 .
λ m = 4 n eff L (2m1) φ r /π .

Metrics