Abstract

We propose a structured illumination scheme for achieving widefield coherent anti-Stokes Raman scattering (CARS) microscopy with a resolution surpassing the diffraction limit in two dimensions (2D). By acquiring a set of coherent images of a sample with third-order nonlinear susceptibility illuminated by the phase-matched excitation field of square lattice patterns, a 2D super-resolution CARS image can be reconstructed. We derive a theoretical framework to describe the coherent image formation and reconstruction scheme for this structured illumination CARS imaging system and carry out numerical simulations to investigate its imaging performance. The results demonstrate that our method promises a particular benefit on CARS microscopy by adding the super-resolution capability to improve its 2D spatial resolution by a factor of approximately three.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  2. M. Müller, J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
    [CrossRef]
  3. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [CrossRef] [PubMed]
  4. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1959).
  5. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  6. D. Wildanger, R. Medda, L. Kastrup, S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
    [CrossRef] [PubMed]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  8. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  9. R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns,” Micron 34(6–7), 283–291 (2003).
    [CrossRef] [PubMed]
  10. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [CrossRef] [PubMed]
  11. W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
    [CrossRef] [PubMed]
  12. V. Raghunathan, E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
    [CrossRef] [PubMed]
  13. H. Kim, G. W. Bryant, S. J. Stranick, “Superresolution four-wave mixing microscopy,” Opt. Express 20(6), 6042–6051 (2012).
    [CrossRef] [PubMed]
  14. K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
    [CrossRef] [PubMed]
  15. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  16. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
    [CrossRef] [PubMed]
  17. B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
    [CrossRef] [PubMed]
  18. C. Heinrich, S. Bernet, M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
    [CrossRef]
  19. S. Chowdhury, A.-H. Dhalla, J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express 3(8), 1841–1854 (2012).
    [CrossRef] [PubMed]
  20. M. Gu, Advanced Optical Imaging Theory, Springer Series in Optical Sciences (Springer, 2000).
  21. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 6.

2012 (2)

2010 (2)

2009 (3)

W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

D. Wildanger, R. Medda, L. Kastrup, S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[CrossRef] [PubMed]

2007 (1)

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[CrossRef] [PubMed]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

2005 (2)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

2004 (1)

C. Heinrich, S. Bernet, M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[CrossRef]

2003 (1)

R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns,” Micron 34(6–7), 283–291 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Müller, J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

1994 (1)

Bates, M.

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Beeker, W. P.

Bernet, S.

C. Heinrich, S. Bernet, M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[CrossRef]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Boller, K.-J.

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bryant, G. W.

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Chowdhury, S.

Cleff, C.

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Dhalla, A.-H.

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Fallnich, C.

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Groß, P.

Gustafsson, M. G. L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

Hajek, K. M.

Heckenberg, N.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[CrossRef] [PubMed]

Heinrich, C.

C. Heinrich, S. Bernet, M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[CrossRef]

Heintzmann, R.

R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns,” Micron 34(6–7), 283–291 (2003).
[CrossRef] [PubMed]

Hell, S. W.

D. Wildanger, R. Medda, L. Kastrup, S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[CrossRef] [PubMed]

S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[CrossRef] [PubMed]

Herek, J. L.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Izatt, J.

Kastrup, L.

D. Wildanger, R. Medda, L. Kastrup, S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[CrossRef] [PubMed]

Kim, H.

Kner, P.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Lai, K.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[CrossRef] [PubMed]

Lee, C. J.

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Littleton, B.

K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
[CrossRef] [PubMed]

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[CrossRef] [PubMed]

Longstaff, D.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[CrossRef] [PubMed]

McIntyre, T. J.

Medda, R.

D. Wildanger, R. Medda, L. Kastrup, S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[CrossRef] [PubMed]

Müller, M.

M. Müller, J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

Munroe, P.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[CrossRef] [PubMed]

Offerhaus, H. L.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Potma, E. O.

V. Raghunathan, E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Raghunathan, V.

Ritsch-Marte, M.

C. Heinrich, S. Bernet, M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[CrossRef]

Rubinsztein-Dunlop, H.

K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
[CrossRef] [PubMed]

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[CrossRef] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Sarafis, V.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[CrossRef] [PubMed]

Schins, J. M.

M. Müller, J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Stranick, S. J.

Turk, D.

Wichmann, J.

Wildanger, D.

D. Wildanger, R. Medda, L. Kastrup, S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[CrossRef] [PubMed]

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Xie, X. S.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Zhuang, X.

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

C. Heinrich, S. Bernet, M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 84(5), 816–818 (2004).
[CrossRef]

Biomed. Opt. Express (1)

J. Microsc. (2)

D. Wildanger, R. Medda, L. Kastrup, S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. 236(1), 35–43 (2009).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

M. Müller, J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

Micron (2)

R. Heintzmann, “Saturated patterned excitation microscopy with two-dimensional excitation patterns,” Micron 34(6–7), 283–291 (2003).
[CrossRef] [PubMed]

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, H. Rubinsztein-Dunlop, “Coherent super-resolution microscopy via laterally structured illumination,” Micron 38(2), 150–157 (2007).
[CrossRef] [PubMed]

Nat. Methods (2)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Other (3)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1959).

M. Gu, Advanced Optical Imaging Theory, Springer Series in Optical Sciences (Springer, 2000).

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of a wide-field CARS microscopy with nonlinear structured illumination. The inset on the left shows the non-collinear phase-matching geometry of the wave vectors associated with CARS excitation.

Fig. 2
Fig. 2

Structured illumination field of CARS pump beams and its resulting nonlinear excitation field distribution in the proposed method. The associated coherent transfer functions (CTFs) that can be extended from the conventional CTF are displayed.

Fig. 3
Fig. 3

Computer-synthesized resolution test target used for the evaluation of resolving power of the proposed super-resolution CARS microscopy. The black-and-white contrast represents a binary sample density such that the sample is present only within white regions whereas its complete absence depicted in black. Colored lines are not the target’s geometrical features but merely indicate the lines along which intensity profiles will be taken from the simulated images. The yellow circle on the sector star pattern is drawn for the line along which the radial bars have a cycle period equal to the diffraction limit (indicated also by the gap sandwiched by blue arrows at the bottom right).

Fig. 4
Fig. 4

Coherent images (top) and the associated spatial-frequency spectra (bottom) for (a,a’) the conventional widefield (BF) CARS and (b,b’) the super-resolution (SI) CARS, numerically simulated using the same resolution test target shown in Fig. 3. The dashed circle (yellow) on the area of the sector star target is drawn to indicate the location on which the radial bars have a cycle period equal to the diffraction limit δ D L ( = 311 nm). The radial bars at the circumferences of the five circles with increasing radii (green lines), have cycle periods of 0.58, 0.70, 0.81, 1.16, and 1.74 times the diffraction limit, respectively, which are equal to those of the line bar elements 10, 12, 14, 20, and 30. The image spectra (logarithmic scale) are displayed in false color with their horizontal and vertical axes normalized with the intensity cut-off frequency (the inverse of diffraction-limited resolution).

Fig. 5
Fig. 5

Line intensity distributions of the images of bar patterns in the super-resolving SI-CARS (red lines) compared to the conventional BF-CARS (blue lines). The line intensity profiles are taken from the images of (a-e) the vertical bars in Group HV and (a’-e’) the bars with their line normal oriented at + 45° in Group DG. The bar-pattern elements under investigation vary with their cycle periods Λ L S of (a,a’) 180 nm, (b,b’) 216 nm, (c,c’) 252 nm, (d,d’) 360 nm, and (e,e’) 540 nm. For comparison, the profiles of the original bar patterns on the test target are displayed together (dotted gray lines). In each line plot, the distance is normalized to the diffraction limit ( δ D L = 311 nm) of resolution and close-up images of the corresponding bar-pattern element (with a field-of-view of 4 times the pattern’s cycle period) are added to the right for SI-CARS (upper) and BF-CARS (lower).

Fig. 6
Fig. 6

Simulation of the point spread function (PSF) of the super-resolving SI-CARS imaging system compared to the conventional BF-CARS imaging system of the same NA. The orientation-dependent PSFs are evaluated actually from the spatial spreading of image intensity profiles taken for delta-function-like line objects oriented at 0°, 90°, + 45°, –45°, + 60°, and –60°. The PSF of the coherent BF system is isotropic to all orientations (dotted line). The curves undistinguishable due to overlap between one another are displayed in the same color. Here, the distance is normalized to the diffraction limit of resolution.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

cos θ PM = k AS k s 2 k p = n AS ω AS n s ω s 2 n p ω p ( Ω mol ω p )
E EX (r) E px 2 (r)+ E py 2 (r) cos 2 ( k px r+ ϕ px )+ cos 2 ( k py r+ ϕ py ) = 1 2 [ 1+cos(2 k px r+2 ϕ px ) ]+ 1 2 [ 1+cos(2 k py r+2 ϕ py ) ]
d(r)= u i (r) u i * (r)= | [ s(r)E(r) ] h c (r) | 2 ,
D(f)= d ˜ (f)=ac{ [ S(f) E ˜ (f) ]C(f) },
D BF (f)=ac{ S(f)C(f) },
E EX (r)1 + { exp[i(2π f sx r+ ϕ sx )]+exp[i(2π f sx r+ ϕ sx )] } /4 + { exp[i(2π f sy r+ ϕ sy )]+exp[i(2π f sy r+ ϕ sy )] } /4
D SI (f)=ac{ S(f)[ δ(f)+ 1 4 { e +i ϕ sx δ(f f sx )+ e i ϕ sx δ(f+ f sx ) }+ 1 4 { e +i ϕ sy δ(f f sy )+ e i ϕ sx δ(f+ f sy ) } ]C(f) }
D SI (f)= [ ac{ S 0 C(f) }+ac{ S x + C(f) }+ac{ S x C(f) }+ac{ S y + C(f) }+ac{ S y C(f) } ] 0 + [ S x C(f) S x + C(f) ] 1 exp[ +i2 ϕ sx ]+ [ S x + C(f) S x C(f) ] 2 exp[ i2 ϕ sx ] + [ S y C(f) S y + C(f) ] 3 exp[ +i2 ϕ sy ]+ [ S y + C(f) S y C(f) ] 4 exp[ i2 ϕ sy ] + [ S x C(f) S 0 C(f)+ S 0 C(f) S x + C(f) ] 5 exp[ +i ϕ sx ] + [ S x + C(f) S 0 C(f)+ S 0 C(f) S x C(f) ] 6 exp[ i ϕ sx ] + [ S y C(f) S 0 C(f)+ S 0 C(f) S y + C(f) ] 7 exp[ +i ϕ sy ] + [ S y + C(f) S 0 C(f)+ S 0 C(f) S y C(f) ] 8 exp[ i ϕ sy ] + [ S x C(f) S y C(f)+ S y + C(f) S x + C(f) ] 9 exp[ +i( ϕ sx ϕ sy ) ] + [ S y C(f) S x C(f)+ S x + C(f) S y + C(f) ] 10 exp[ i( ϕ sx ϕ sy ) ] + [ S x C(f) S y + C(f)+ S y C(f) S x + C(f) ] 11 exp[ +i( ϕ sx + ϕ sy ) ] + [ S y + C(f) S x C(f)+ S x + C(f) S y C(f) ] 12 exp[ i( ϕ sx + ϕ sy ) ] = n=0 12 T n (f) exp[i Φ n ].
C EP (f)=C(f)+ 1 4 C(f f sx )+ 1 4 C(f+ f sx )+ 1 4 C(f f sy )+ 1 4 C(f+ f sy ), C 0 + C x + C x + + C y + C y +
D EP (f)= [ ac{ C 0 S(f) }+ac{ C x + S(f) }+ac{ C x S(f) }+ac{ C y + S(f) }+ac{ C y S(f) } ] 0 + [ C x + S(f) C x S(f) ] 1 + [ C x S(f) C x + S(f) ] 2 + [ C y + S(f) C y S(f) ] 3 + [ C y S(f) C y + S(f) ] 4 + [ C x + S(f) C 0 S(f)+ C 0 S(f) C x S(f) ] 5 + [ C x S(f) C 0 S(f)+ C 0 S(f) C x + S(f) ] 6 + [ C y + S(f) C 0 S(f)+ C 0 S(f) C y S(f) ] 7 + [ C y S(f) C 0 S(f)+ C 0 S(f) C y + S(f) ] 8 + [ C x + S(f) C y + S(f)+ C y S(f) C x S(f) ] 9 + [ C y + S(f) C x + S(f)+ C x S(f) C y S(f) ] 10 + [ C x + S(f) C y S(f)+ C y + S(f) C x S(f) ] 11 + [ C y S(f) C x + S(f)+ C x S(f) C y + S(f) ] 12 = n=0 12 V n (f) ,
T γ (f)= V γ (f+[ f α f β ]),
D EP (f)= n=0 12 T n (f[ f α f β ] | n ) .
d SI (r)= u SI (r) u SI * (r)= | F 1 { [ S(f) E ˜ EX (f) ]C(f) } | 2

Metrics