Abstract

A novel directional backlight system based on volume-holographic optical elements (VHOEs) is demonstrated for time-sequential autostereoscopic three-dimensional (3-D) flat-panel displays. Here, VHOEs are employed to control the direction of light for a time-multiplexed display for each of the left and the right view. Those VHOEs are fabricated by recording interference patterns between collimated reference beams and diverging object beams for each of the left and right eyes on the volume holographic recording material. For this, self-developing photopolymer films (Bayfol® HX) were used, since those simplify the manufacturing process of VHOEs substantially. Here, the directional lights are similar to the collimated reference beams that were used to record the VHOEs and create two diffracted beams similar to the object beams used for recording the VHOEs. Then, those diffracted beams read the left and right images alternately shown on the LCD panel and form two converging viewing zones in front of the user’s eyes. By this he can perceive the 3-D image. Theoretical predictions and experimental results are presented and the performance of the developed prototype is shown.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Ives, “Color photography,” U.S. Patent, 666,424 (1901).
  2. H. E. Ives, “A camera for making parallax panoramagrams,” J. Opt. Soc. Am. 17(6), 435–439 (1928).
    [CrossRef]
  3. T. Okoshi, Three Dimensional Imaging Techniques (Academic, 1976).
  4. N. A. Dodgson, “Analysis of the viewing zone of the Cambridge autostereoscopic display,” Appl. Opt. 35(10), 1705–1710 (1996).
    [CrossRef] [PubMed]
  5. P. V. Harman, “Retroreflective screens and their application to autostereoscopic displays,” Proc. SPIE 3012, 145–153 (1997).
    [CrossRef]
  6. D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
    [CrossRef]
  7. N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
    [CrossRef]
  8. N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “50-inch time-multiplexed autostereoscopic display,” Proc. SPIE 3957, 177–183 (2000).
    [CrossRef]
  9. T. Sasagawa, A. Yuuki, S. Tahata, O. Murakami, and K. Oda, “Dual directional backlight for stereoscopic LCD,” in Society for Information Display (SID) International Symposium Digest (Society for Information Display, 2003), pp. 399–402.
    [CrossRef]
  10. http://www.fujifilm.com/products/3d/camera/finepix_real3dw3/ .
  11. K. W. Chien, H. P. D. Shieh, “Time-multiplexed three-dimensional displays based on directional backlights with fast-switching liquid-crystal displays,” Appl. Opt. 45(13), 3106–3110 (2006).
    [CrossRef] [PubMed]
  12. B. C. Cho and E.-S. Kim, “Multiview stereoscopic 3D device using volume-holographic optical element,” PCT Patent, WO 2003/096104, A1 (2003).
  13. B.-C. Cho, J.-S. Gu, E.-S. Kim, “Performance analysis of photopolymer-based VHOE for time-sequential multiview 3D display system,” Proc. SPIE 4712, 406–417 (2002).
    [CrossRef]
  14. J.-S. Koo, S.-C. Kim, E.-S. Kim, “Implementation of VHOE-based multiview stereoscopic 3D display system,” Proc. SPIE 5005, 179–189 (2003).
    [CrossRef]
  15. W. C. Su, C. Y. Chen, Y. F. Wang, “Stereogram implemented with a holographic image splitter,” Opt. Express 19(10), 9942–9949 (2011).
    [CrossRef] [PubMed]
  16. Y. Takaki, N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [CrossRef] [PubMed]
  17. S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE, 2001).
  18. L. Lipton, Foundations of the Stereoscopic Cinema (Van Nostrand Reinhold, 1982).
  19. D. F. McAllister, ed., Stereo Computer Graphics and Other True 3D Technologies (Princeton University, 1993).
  20. C. van Berkel, J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179–186 (1997).
    [CrossRef]
  21. I. Relke, B. Riemann, “Three-dimensional multiview large projection system,” Proc. SPIE 5664, 167–174 (2005).
    [CrossRef]
  22. J. D. Montes, P. Campoy, “New three-dimensional visualization system based on angular image differentiation,” Proc. SPIE 2409, 125–132 (1995).
    [CrossRef]
  23. K. Matsumoto, T. Honda, “Research of 3D display using anamorphic optics,” Proc. SPIE 3012, 199–207 (1997).
    [CrossRef]
  24. C. H. Chen, Y. C. Yeh, H. P. D. Shieh, “3-D mobile display based on Moiré-free dual directional backlight and driving scheme for image crosstalk reduction,” J. Disp. Technol. 4(1), 92–96 (2008).
    [CrossRef]
  25. H. Horii, K. Tanaka, and K. Oda, “Development of 3D digital camera system,” in 17th Camera Technology Seminar, Society of Photographic Science and Technology of Japan (2009).
  26. J. C. Schultza, R. Brott, M. Sykora, W. Bryan, T. Fukami, K. Nakao, and A. Takimoto, “Full resolution autostereoscopic 3D display for mobile applications,” in Society for Information Display (SID) International Symposium Digest (Society for Information Display, 2009), pp. 127–131.
  27. A. Hayashi, A. Sakai, T. Kometani, and H. Ito, “Simple measure to reduce optical crosstalk in an autostereoscopic display with field-sequential method and directional backlight system,” in Society for Information Display (SID) International Symposium Digest (Society for Information Display, 2012), pp. 1055–1057.
    [CrossRef]
  28. Y.-S. Hwang, M.-C. Kim, and E.-S. Kim, “VHOE-based time-multiplexed autostereoscopic three-dimensional display system,” in Proceedings of Collaborative Conference on 3D and Materials Research (2012), pp. 18–19.
  29. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [CrossRef]
  30. T. Fäcke, F.-K. Bruder, M.-S. Weiser, T. Rölle, and D. Hönel, “Novel non-crystalizing methacrylates, production and use thereof,” PCT Patent WO/2011/054818 (2011).
  31. F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
    [CrossRef] [PubMed]

2011

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[CrossRef] [PubMed]

W. C. Su, C. Y. Chen, Y. F. Wang, “Stereogram implemented with a holographic image splitter,” Opt. Express 19(10), 9942–9949 (2011).
[CrossRef] [PubMed]

2010

2008

C. H. Chen, Y. C. Yeh, H. P. D. Shieh, “3-D mobile display based on Moiré-free dual directional backlight and driving scheme for image crosstalk reduction,” J. Disp. Technol. 4(1), 92–96 (2008).
[CrossRef]

2006

2005

I. Relke, B. Riemann, “Three-dimensional multiview large projection system,” Proc. SPIE 5664, 167–174 (2005).
[CrossRef]

2003

J.-S. Koo, S.-C. Kim, E.-S. Kim, “Implementation of VHOE-based multiview stereoscopic 3D display system,” Proc. SPIE 5005, 179–189 (2003).
[CrossRef]

2002

B.-C. Cho, J.-S. Gu, E.-S. Kim, “Performance analysis of photopolymer-based VHOE for time-sequential multiview 3D display system,” Proc. SPIE 4712, 406–417 (2002).
[CrossRef]

2000

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[CrossRef]

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “50-inch time-multiplexed autostereoscopic display,” Proc. SPIE 3957, 177–183 (2000).
[CrossRef]

1997

P. V. Harman, “Retroreflective screens and their application to autostereoscopic displays,” Proc. SPIE 3012, 145–153 (1997).
[CrossRef]

C. van Berkel, J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179–186 (1997).
[CrossRef]

K. Matsumoto, T. Honda, “Research of 3D display using anamorphic optics,” Proc. SPIE 3012, 199–207 (1997).
[CrossRef]

1996

1995

J. D. Montes, P. Campoy, “New three-dimensional visualization system based on angular image differentiation,” Proc. SPIE 2409, 125–132 (1995).
[CrossRef]

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[CrossRef]

1928

Bruder, F.-K.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[CrossRef] [PubMed]

Campoy, P.

J. D. Montes, P. Campoy, “New three-dimensional visualization system based on angular image differentiation,” Proc. SPIE 2409, 125–132 (1995).
[CrossRef]

Canepa, P.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[CrossRef]

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “50-inch time-multiplexed autostereoscopic display,” Proc. SPIE 3957, 177–183 (2000).
[CrossRef]

Chen, C. H.

C. H. Chen, Y. C. Yeh, H. P. D. Shieh, “3-D mobile display based on Moiré-free dual directional backlight and driving scheme for image crosstalk reduction,” J. Disp. Technol. 4(1), 92–96 (2008).
[CrossRef]

Chen, C. Y.

Chien, K. W.

Cho, B.-C.

B.-C. Cho, J.-S. Gu, E.-S. Kim, “Performance analysis of photopolymer-based VHOE for time-sequential multiview 3D display system,” Proc. SPIE 4712, 406–417 (2002).
[CrossRef]

Clarke, J. A.

C. van Berkel, J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179–186 (1997).
[CrossRef]

Dodgson, N. A.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “50-inch time-multiplexed autostereoscopic display,” Proc. SPIE 3957, 177–183 (2000).
[CrossRef]

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[CrossRef]

N. A. Dodgson, “Analysis of the viewing zone of the Cambridge autostereoscopic display,” Appl. Opt. 35(10), 1705–1710 (1996).
[CrossRef] [PubMed]

Ezra, D.

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Fäcke, T.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[CrossRef] [PubMed]

Gu, J.-S.

B.-C. Cho, J.-S. Gu, E.-S. Kim, “Performance analysis of photopolymer-based VHOE for time-sequential multiview 3D display system,” Proc. SPIE 4712, 406–417 (2002).
[CrossRef]

Hagen, R.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[CrossRef] [PubMed]

Harman, P. V.

P. V. Harman, “Retroreflective screens and their application to autostereoscopic displays,” Proc. SPIE 3012, 145–153 (1997).
[CrossRef]

Harrold, J.

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Holliman, N. S.

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Honda, T.

K. Matsumoto, T. Honda, “Research of 3D display using anamorphic optics,” Proc. SPIE 3012, 199–207 (1997).
[CrossRef]

Ives, H. E.

Kim, E.-S.

J.-S. Koo, S.-C. Kim, E.-S. Kim, “Implementation of VHOE-based multiview stereoscopic 3D display system,” Proc. SPIE 5005, 179–189 (2003).
[CrossRef]

B.-C. Cho, J.-S. Gu, E.-S. Kim, “Performance analysis of photopolymer-based VHOE for time-sequential multiview 3D display system,” Proc. SPIE 4712, 406–417 (2002).
[CrossRef]

Kim, S.-C.

J.-S. Koo, S.-C. Kim, E.-S. Kim, “Implementation of VHOE-based multiview stereoscopic 3D display system,” Proc. SPIE 5005, 179–189 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[CrossRef]

Koo, J.-S.

J.-S. Koo, S.-C. Kim, E.-S. Kim, “Implementation of VHOE-based multiview stereoscopic 3D display system,” Proc. SPIE 5005, 179–189 (2003).
[CrossRef]

Lang, S. R.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[CrossRef]

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “50-inch time-multiplexed autostereoscopic display,” Proc. SPIE 3957, 177–183 (2000).
[CrossRef]

Martin, G.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “50-inch time-multiplexed autostereoscopic display,” Proc. SPIE 3957, 177–183 (2000).
[CrossRef]

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[CrossRef]

Matsumoto, K.

K. Matsumoto, T. Honda, “Research of 3D display using anamorphic optics,” Proc. SPIE 3012, 199–207 (1997).
[CrossRef]

Montes, J. D.

J. D. Montes, P. Campoy, “New three-dimensional visualization system based on angular image differentiation,” Proc. SPIE 2409, 125–132 (1995).
[CrossRef]

Moore, J. R.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[CrossRef]

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “50-inch time-multiplexed autostereoscopic display,” Proc. SPIE 3957, 177–183 (2000).
[CrossRef]

Nago, N.

Omar, B. A.

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Relke, I.

I. Relke, B. Riemann, “Three-dimensional multiview large projection system,” Proc. SPIE 5664, 167–174 (2005).
[CrossRef]

Riemann, B.

I. Relke, B. Riemann, “Three-dimensional multiview large projection system,” Proc. SPIE 5664, 167–174 (2005).
[CrossRef]

Rölle, T.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[CrossRef] [PubMed]

Shapiro, L. S.

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Shieh, H. P. D.

C. H. Chen, Y. C. Yeh, H. P. D. Shieh, “3-D mobile display based on Moiré-free dual directional backlight and driving scheme for image crosstalk reduction,” J. Disp. Technol. 4(1), 92–96 (2008).
[CrossRef]

K. W. Chien, H. P. D. Shieh, “Time-multiplexed three-dimensional displays based on directional backlights with fast-switching liquid-crystal displays,” Appl. Opt. 45(13), 3106–3110 (2006).
[CrossRef] [PubMed]

Su, W. C.

Takaki, Y.

van Berkel, C.

C. van Berkel, J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179–186 (1997).
[CrossRef]

Wang, Y. F.

Weiser, M.-S.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[CrossRef] [PubMed]

Woodgate, G. J.

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

Yeh, Y. C.

C. H. Chen, Y. C. Yeh, H. P. D. Shieh, “3-D mobile display based on Moiré-free dual directional backlight and driving scheme for image crosstalk reduction,” J. Disp. Technol. 4(1), 92–96 (2008).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, T. Fäcke, “From the surface to volume: Concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[CrossRef] [PubMed]

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[CrossRef]

J. Disp. Technol.

C. H. Chen, Y. C. Yeh, H. P. D. Shieh, “3-D mobile display based on Moiré-free dual directional backlight and driving scheme for image crosstalk reduction,” J. Disp. Technol. 4(1), 92–96 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Soc. Inf. Disp.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “A time-sequential multi-projector autostereoscopic 3D display,” J. Soc. Inf. Disp. 8(2), 169–176 (2000).
[CrossRef]

Opt. Express

Proc. SPIE

B.-C. Cho, J.-S. Gu, E.-S. Kim, “Performance analysis of photopolymer-based VHOE for time-sequential multiview 3D display system,” Proc. SPIE 4712, 406–417 (2002).
[CrossRef]

J.-S. Koo, S.-C. Kim, E.-S. Kim, “Implementation of VHOE-based multiview stereoscopic 3D display system,” Proc. SPIE 5005, 179–189 (2003).
[CrossRef]

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, P. Canepa, “50-inch time-multiplexed autostereoscopic display,” Proc. SPIE 3957, 177–183 (2000).
[CrossRef]

P. V. Harman, “Retroreflective screens and their application to autostereoscopic displays,” Proc. SPIE 3012, 145–153 (1997).
[CrossRef]

D. Ezra, G. J. Woodgate, B. A. Omar, N. S. Holliman, J. Harrold, L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409, 31–40 (1995).
[CrossRef]

C. van Berkel, J. A. Clarke, “Characterization and optimization of 3D-LCD module design,” Proc. SPIE 3012, 179–186 (1997).
[CrossRef]

I. Relke, B. Riemann, “Three-dimensional multiview large projection system,” Proc. SPIE 5664, 167–174 (2005).
[CrossRef]

J. D. Montes, P. Campoy, “New three-dimensional visualization system based on angular image differentiation,” Proc. SPIE 2409, 125–132 (1995).
[CrossRef]

K. Matsumoto, T. Honda, “Research of 3D display using anamorphic optics,” Proc. SPIE 3012, 199–207 (1997).
[CrossRef]

Other

H. Horii, K. Tanaka, and K. Oda, “Development of 3D digital camera system,” in 17th Camera Technology Seminar, Society of Photographic Science and Technology of Japan (2009).

J. C. Schultza, R. Brott, M. Sykora, W. Bryan, T. Fukami, K. Nakao, and A. Takimoto, “Full resolution autostereoscopic 3D display for mobile applications,” in Society for Information Display (SID) International Symposium Digest (Society for Information Display, 2009), pp. 127–131.

A. Hayashi, A. Sakai, T. Kometani, and H. Ito, “Simple measure to reduce optical crosstalk in an autostereoscopic display with field-sequential method and directional backlight system,” in Society for Information Display (SID) International Symposium Digest (Society for Information Display, 2012), pp. 1055–1057.
[CrossRef]

Y.-S. Hwang, M.-C. Kim, and E.-S. Kim, “VHOE-based time-multiplexed autostereoscopic three-dimensional display system,” in Proceedings of Collaborative Conference on 3D and Materials Research (2012), pp. 18–19.

H. E. Ives, “Color photography,” U.S. Patent, 666,424 (1901).

T. Okoshi, Three Dimensional Imaging Techniques (Academic, 1976).

T. Sasagawa, A. Yuuki, S. Tahata, O. Murakami, and K. Oda, “Dual directional backlight for stereoscopic LCD,” in Society for Information Display (SID) International Symposium Digest (Society for Information Display, 2003), pp. 399–402.
[CrossRef]

http://www.fujifilm.com/products/3d/camera/finepix_real3dw3/ .

S. A. Benton, ed., Selected Papers on Three-Dimensional Displays (SPIE, 2001).

L. Lipton, Foundations of the Stereoscopic Cinema (Van Nostrand Reinhold, 1982).

D. F. McAllister, ed., Stereo Computer Graphics and Other True 3D Technologies (Princeton University, 1993).

T. Fäcke, F.-K. Bruder, M.-S. Weiser, T. Rölle, and D. Hönel, “Novel non-crystalizing methacrylates, production and use thereof,” PCT Patent WO/2011/054818 (2011).

B. C. Cho and E.-S. Kim, “Multiview stereoscopic 3D device using volume-holographic optical element,” PCT Patent, WO 2003/096104, A1 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Configuration of the proposed VHOE-based time-sequential autostereoscopic display system: (a) Operational concept of the proposed system, (b) Schematic of the VHOE-based directional backlight.

Fig. 2
Fig. 2

Recording and reconstruction processes of VHOEs on the photopolymers: (a) For the case of a single-color VHOE for the left eye, (b) For the case of the stacked 3-color VHOEs for both eyes.

Fig. 3
Fig. 3

Systematic diagrams for (a) recording of the 3-color phase gratings on the photopolymer films with a green laser, and (b) stacking of two sets of 3-color VHOEs for each of the left and right eyes.

Fig. 4
Fig. 4

Schematic for showing the crosstalk due to color dispersion of the 3-color VHOEs with a white-light illumination.

Fig. 5
Fig. 5

Operational principle of the grooved LGP: (a) Structure of the grooved LGP with two white LED light sources, (b) Angular relations of the rays between the incident beams from the light source and the reflected beams from the inclined surface of the prism.

Fig. 6
Fig. 6

Optical setup for recording the 3-color phase gratings on the photopolymers with a green laser.

Fig. 7
Fig. 7

Diffraction-efficiency variations depending on the recording beam powers and the time-scheduling.

Fig. 8
Fig. 8

Measured angular selectivity of the recorded VHOEs depending on the 3-color wavelengths.

Fig. 9
Fig. 9

(a) Schematic diagram of the symmetrical relations between the incident and diffracted beam angles on the 3-color VHOEs, (b) Photograph of two sets of fabricated 3-color VHOEs for both eyes.

Fig. 10
Fig. 10

Photographs of the diffracted beams from the 3-color VHOEs: (a) Diffracted red, green and blue beams from each of the 3-color VHOEs, (b) White beam formation diffracted from the stacked 3-color VHOEs.

Fig. 11
Fig. 11

Angular distribution of the proposed VHOE-based directional backlights.

Fig. 12
Fig. 12

Photograph of the viewing-zones of the proposed VHOE-based 3-D display system: (a) Viewing-zone of the diffracted beams for both sides, (b) Viewing zone for the left-side diffracted beam, (c) Viewing-zone for the right-side diffracted beam.

Fig. 13
Fig. 13

Photograph of an overall prototype of the proposed VHOE-based time-multiplexed autostereoscopic 3-D system.

Fig. 14
Fig. 14

Demonstrated photographs of the proposed VHOE-based directional backlight with the LCD panel at the positions of the left and right eyes: (a) and (d) Left and right images viewed at the positions of the left and right eyes, (b) and (c) Crosstalk video images at the positions of the right and left eyes, respectively.

Tables (2)

Tables Icon

Table 1 Calculated angles and locations of the optical components for recording the 3-color VHOEs with a green laser.

Tables Icon

Table 2 Specification of the customized photopolymer film (Bayfol® HX)

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E R (x,y,z)= I R 1/2 exp(j k R r) E S (x,y,z)= I S 1/2 exp(j k S (r- r o1 )(r- r ο1 ))/| r- r o1 | ( r o1 = (-D/2,0,L),r = (x,y,z))
I(r)= | I R 1/2 exp(j k R r)+ I S 1/2 exp(j k S (r- r o1 )(r- r o1 ))/| r- r o1 | | 2 = I R (r)+ I S (r- r o1 )/ | r- r o1 | 2 +2 ( I R (r) I S (r r o1 )/| r- r o1 |) 1/2 cos( k S (r r o1 )(r- r o1 ) k R r) = I R (r)+ I S (r r o1 )/ | r- r o1 | 2 +2 ( I R (r) I S (r r o1 )/| r- r o1 |) 1/2 cos( k G (r r o1 )r k S r o1 ) ( k G (r- r o1 )= k S (r r o1 ) k R , | k G (r- r o1 ) |=2ksin(θ(r r o1 )/2), Λ=2π/| k G ( r r o1 )|)
I(x,y,L)= | I S 1/2 expj( k S L)exp(j k S x 2 + y 2 2L )+cc | 2
η= φ 2 sin 2 ( φ 2 + χ 2 ) φ 2 + χ 2 , φ= πΔnd λ cos ( α )cos ( β ) , and χ=Δα πd Λ cos( αβ 2 ) cos ( β )
η Total = 1 wd z=0 d x=w/2 w/2 η( β( x,z ) )
n air sinα= n p sin α , and n air sinβ= n p sin β
k R sin α + k S sin β = K II and k R cos α + k S cos β = K
K G =R-S= 2π n p λ ( 2sin( θ ) 0 ) | K G | 2π Λ
Λ λ 2 n p sin( θ )
Λ r,g,b = λ r,g,b / (2 n p sin θ 0 ) , θ 0 = α 0 + β 0 2
θ r,g,b = sin 1 ( Λ 0 Λ r,g,b sin θ 0 )= α r,g,b + β r,g,b 2
ρ= π 2 (θ+γ+ α 1 ),
φ=ρ α 1 = π 2 (θ+γ+2 α 1 ),
φ = sin 1 ( n LGP / n air sin(φ))
φ=ρ α 1 = π 2 (θ+γ+2n α 1 2m β 1 )

Metrics