Abstract

We propose an approach for generating a multifocal spot array (MSA) with a high numerical aperture (NA) objective. The MSA is generated by using a special designed phase-only modulation at the back aperture of an objective. Without using any iteration algorithm, the modulated phase pattern is directly obtained by the simple analytical expressions based on the fractional Talbot effect. It is shown that the number of the spots in the focal region depends solely on the fractional Talbot parameter. By engineering the phase pattern with a large fractional Talbot parameter, a large number of focal spots can be created. Furthermore, the intensity distribution of each focal spot can be manipulated by introducing a composite spatially shifted vortex beam (CSSVB) as the incident field, leading to creation of various kinds of specific shaped spots. Consequently, the MSA composed of multiple individual spots with specific shape is created by focusing the CSSVB combined with the multifocal phase-only modulation. These kinds of MSAs may be found applications in parallel optical micromanipulation, multifocal multiphoton microscopic imaging, and parallel laser printing nanofabrication.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gu, H. Lin, X. Li, “Parallel multiphoton microscopy with cylindrically polarized multifocal arrays,” Opt. Lett. 38(18), 3627–3630 (2013).
    [CrossRef] [PubMed]
  2. D. N. Fittinghoff, J. A. Squier, “Time-decorrelated multifocal array for multiphoton microscopy and micromachining,” Opt. Lett. 25(16), 1213–1215 (2000).
    [CrossRef] [PubMed]
  3. K. Bahlmann, P. T. C. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, K. Bellve, “Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz,” Opt. Express 15(17), 10991–10998 (2007).
    [CrossRef] [PubMed]
  4. J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
    [CrossRef]
  5. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  6. R. L. Eriksen, V. R. Daria, J. Gluckstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
    [CrossRef] [PubMed]
  7. T. Minamikawa, M. Hashimoto, K. Fujita, S. Kawata, T. Araki, “Multi-focus excitation coherent anti-Stokes Raman scattering (CARS) microscopy and its applications for real-time imaging,” Opt. Express 17(12), 9526–9536 (2009).
    [CrossRef] [PubMed]
  8. A. Jesacher, M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
    [CrossRef] [PubMed]
  9. H. Lin, B. Jia, M. Gu, “Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication,” Opt. Lett. 36(3), 406–408 (2011).
    [CrossRef] [PubMed]
  10. J. Kato, N. Takeyasu, Y. Adachi, H. Sun, S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
    [CrossRef]
  11. T. Nielsen, M. Fricke, D. Hellweg, P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201(3), 368–376 (2001).
    [CrossRef] [PubMed]
  12. A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
    [CrossRef] [PubMed]
  13. D. N. Fittinghoff, P. W. Wiseman, J. A. Squier, “Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy,” Opt. Express 7(8), 273–279 (2000).
    [CrossRef] [PubMed]
  14. F. Merenda, J. Rohner, J.-M. Fournier, R.-P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007).
    [CrossRef] [PubMed]
  15. Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, “High-speed spectrally resolved multifocal multiphoton microscopy,” Appl. Phys. B 99(4), 633–637 (2010).
    [CrossRef]
  16. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, F. S. Pavone, “Multiphoton multifocal microscopy exploiting a diffractive optical element,” Opt. Lett. 28(20), 1918–1920 (2003).
    [CrossRef] [PubMed]
  17. J. Yu, C. Zhou, W. Jia, W. Cao, S. Wang, J. Ma, H. Cao, “Three-dimensional Dammann array,” Appl. Opt. 51(10), 1619–1630 (2012).
    [CrossRef] [PubMed]
  18. J. Yu, C. Zhou, W. Jia, A. Hu, W. Cao, J. Wu, S. Wang, “Three-dimensional Dammann vortex array with tunable topological charge,” Appl. Opt. 51(13), 2485–2490 (2012).
    [CrossRef] [PubMed]
  19. J. A. Davis, I. Moreno, J. L. Martínez, T. J. Hernandez, D. M. Cottrell, “Creating three-dimensional lattice patterns using programmable Dammann gratings,” Appl. Opt. 50(20), 3653–3657 (2011).
    [CrossRef] [PubMed]
  20. M. Cai, C. Tu, H. Zhang, S. Qian, K. Lou, Y. Li, H. T. Wang, “Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields,” Opt. Express 21(25), 31469–31482 (2013).
    [CrossRef] [PubMed]
  21. H. Guo, X. Dong, X. Weng, G. Sui, N. Yang, S. Zhuang, “Multifocus with small size, uniform intensity, and nearly circular symmetry,” Opt. Lett. 36(12), 2200–2202 (2011).
    [CrossRef] [PubMed]
  22. H. Guo, G. Sui, X. Weng, X. Dong, Q. Hu, S. Zhuang, “Control of the multifocal properties of composite vector beams in tightly focusing systems,” Opt. Express 19(24), 24067–24077 (2011).
    [CrossRef] [PubMed]
  23. M. Sakamoto, K. Oka, R. Morita, N. Murakami, “Stable and flexible ring-shaped optical-lattice generation by use of axially symmetric polarization elements,” Opt. Lett. 38(18), 3661–3664 (2013).
    [CrossRef] [PubMed]
  24. J. Chen, Q. Xu, G. Wang, “A four-quadrant phase filter for creating two focusing spots,” Opt. Commun. 285(6), 900–904 (2012).
    [CrossRef]
  25. K. Huang, P. Shi, G. W. Cao, K. Li, X. B. Zhang, Y. P. Li, “Vector-vortex Bessel-Gauss beams and their tightly focusing properties,” Opt. Lett. 36(6), 888–890 (2011).
    [CrossRef] [PubMed]
  26. J. Chen, Y. Yu, “The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective,” Opt. Commun. 283(9), 1655–1660 (2010).
    [CrossRef]
  27. J. Zhao, B. Li, H. Zhao, Y. Hu, W. Wang, Y. Wang, “Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11 beam,” Opt. Commun. 296, 95–100 (2013).
    [CrossRef]
  28. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008).
    [CrossRef] [PubMed]
  29. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13(10), 3777–3786 (2005).
    [CrossRef] [PubMed]
  30. D. R. Burnham, T. Schneider, D. T. Chiu, “Effects of aliasing on the fidelity of a two dimensional array of foci generated with a kinoform,” Opt. Express 19(18), 17121–17126 (2011).
    [CrossRef] [PubMed]
  31. G. Lee, S. H. Song, C.-H. Oh, P.-S. Kim, “Arbitrary structuring of two-dimensional photonic crystals by use of phase-only Fourier gratings,” Opt. Lett. 29(21), 2539–2541 (2004).
    [CrossRef] [PubMed]
  32. K. Obata, J. Koch, U. Hinze, B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
    [CrossRef] [PubMed]
  33. R. W. Gerchberg, W. O. Saxton, “Phase determination for image and diffraction plane pictures in the electron microscope,” Optik (Stuttg.) 34(3), 275–284 (1971).
  34. R. Di Leonardo, F. Ianni, G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
    [CrossRef] [PubMed]
  35. D. Engström, A. Frank, J. Backsten, M. Goksör, J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17(12), 9989–10000 (2009).
    [CrossRef] [PubMed]
  36. H. Duadi, Z. Zalevsky, “Optimized design for realizing a large and uniform 2-D spot array,” J. Opt. Soc. Am. A 27(9), 2027–2032 (2010).
    [CrossRef] [PubMed]
  37. E. H. Waller, G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express 21(18), 21708–21713 (2013).
    [CrossRef] [PubMed]
  38. A. W. Lohmann, J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29(29), 4337–4340 (1990).
    [CrossRef] [PubMed]
  39. C. Zhou, L. Liu, “Simple equations for the calculation of a multilevel phase grating for Talbot array illumination,” Opt. Commun. 115(1–2), 40–44 (1995).
    [CrossRef]
  40. C. Zhou, S. Stankovic, T. Tschudi, “Analytic phase-factor equations for Talbot array illuminations,” Appl. Opt. 38(2), 284–290 (1999).
    [CrossRef] [PubMed]
  41. L.-W. Zhu, X. Yin, Z. Hong, C.-S. Guo, “Reciprocal vector theory for diffractive self-imaging,” J. Opt. Soc. Am. A 25(1), 203–210 (2008).
    [CrossRef] [PubMed]
  42. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [CrossRef]
  43. M. Leutenegger, R. Rao, R. A. Leitgeb, T. Lasser, “Fast focus field calculations,” Opt. Express 14(23), 11277–11291 (2006).
    [CrossRef] [PubMed]
  44. Q. Zhan, “Properties of circularly polarized vortex beams,” Opt. Lett. 31(7), 867–869 (2006).
    [CrossRef] [PubMed]
  45. H. Lin, M. Gu, “Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam,” Appl. Phys. Lett. 102(8), 084103 (2013).
    [CrossRef]
  46. J. Chen, X. Gao, L. Zhu, Q. Xu, W. Ma, “The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams,” Opt. Commun. 318, 100–104 (2014).
    [CrossRef]
  47. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  48. J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100(12), 121101 (2012).
    [CrossRef]

2014

J. Chen, X. Gao, L. Zhu, Q. Xu, W. Ma, “The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams,” Opt. Commun. 318, 100–104 (2014).
[CrossRef]

2013

2012

J. Yu, C. Zhou, W. Jia, W. Cao, S. Wang, J. Ma, H. Cao, “Three-dimensional Dammann array,” Appl. Opt. 51(10), 1619–1630 (2012).
[CrossRef] [PubMed]

J. Yu, C. Zhou, W. Jia, A. Hu, W. Cao, J. Wu, S. Wang, “Three-dimensional Dammann vortex array with tunable topological charge,” Appl. Opt. 51(13), 2485–2490 (2012).
[CrossRef] [PubMed]

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100(12), 121101 (2012).
[CrossRef]

J. Chen, Q. Xu, G. Wang, “A four-quadrant phase filter for creating two focusing spots,” Opt. Commun. 285(6), 900–904 (2012).
[CrossRef]

2011

2010

2009

2008

2007

2006

2005

E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13(10), 3777–3786 (2005).
[CrossRef] [PubMed]

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

2004

2003

2002

J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[CrossRef]

R. L. Eriksen, V. R. Daria, J. Gluckstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
[CrossRef] [PubMed]

2001

T. Nielsen, M. Fricke, D. Hellweg, P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201(3), 368–376 (2001).
[CrossRef] [PubMed]

2000

1999

1995

C. Zhou, L. Liu, “Simple equations for the calculation of a multilevel phase grating for Talbot array illumination,” Opt. Commun. 115(1–2), 40–44 (1995).
[CrossRef]

1990

1971

R. W. Gerchberg, W. O. Saxton, “Phase determination for image and diffraction plane pictures in the electron microscope,” Optik (Stuttg.) 34(3), 275–284 (1971).

1959

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Adachi, Y.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

Ahlawat, S.

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100(12), 121101 (2012).
[CrossRef]

Andresen, P.

T. Nielsen, M. Fricke, D. Hellweg, P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201(3), 368–376 (2001).
[CrossRef] [PubMed]

Antolini, R.

Araki, T.

Arisaka, K.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Backsten, J.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Bahlmann, K.

Bellve, K.

Bengtsson, J.

Booth, M. J.

Burnham, D. R.

Cai, M.

Cao, G. W.

Cao, H.

Cao, W.

Chen, J.

J. Chen, X. Gao, L. Zhu, Q. Xu, W. Ma, “The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams,” Opt. Commun. 318, 100–104 (2014).
[CrossRef]

J. Chen, Q. Xu, G. Wang, “A four-quadrant phase filter for creating two focusing spots,” Opt. Commun. 285(6), 900–904 (2012).
[CrossRef]

J. Chen, Y. Yu, “The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective,” Opt. Commun. 283(9), 1655–1660 (2010).
[CrossRef]

Cheng, A.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Chichkov, B. N.

Chiu, D. T.

Choudhury, A.

Clark, R. L.

Cole, D. G.

Cooper, J.

Cottrell, D. M.

Courtial, J.

Curtis, J. E.

J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[CrossRef]

Daria, V. R.

Dasgupta, R.

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100(12), 121101 (2012).
[CrossRef]

Davis, J. A.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Di Leonardo, R.

Dong, X.

Duadi, H.

Engström, D.

Eriksen, R. L.

Fittinghoff, D. N.

Fournier, J.-M.

Frank, A.

Fricke, M.

T. Nielsen, M. Fricke, D. Hellweg, P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201(3), 368–376 (2001).
[CrossRef] [PubMed]

Froner, E.

Fujita, K.

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Gao, X.

J. Chen, X. Gao, L. Zhu, Q. Xu, W. Ma, “The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams,” Opt. Commun. 318, 100–104 (2014).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg, W. O. Saxton, “Phase determination for image and diffraction plane pictures in the electron microscope,” Optik (Stuttg.) 34(3), 275–284 (1971).

Gluckstad, J.

Goksör, M.

Golshani, P.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Gonçalves, J. T.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[CrossRef]

Gu, M.

Guo, C.-S.

Guo, H.

Gupta, P. K.

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100(12), 121101 (2012).
[CrossRef]

Hashimoto, M.

Hellweg, D.

T. Nielsen, M. Fricke, D. Hellweg, P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201(3), 368–376 (2001).
[CrossRef] [PubMed]

Hernandez, T. J.

Hinze, U.

Hong, Z.

Hu, A.

Hu, Q.

Hu, Y.

J. Zhao, B. Li, H. Zhao, Y. Hu, W. Wang, Y. Wang, “Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11 beam,” Opt. Commun. 296, 95–100 (2013).
[CrossRef]

Huang, K.

Ianni, F.

Jenness, N. J.

Jesacher, A.

Jia, B.

Jia, W.

Johannes, M. S.

Jordan, P.

Joseph, J.

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100(12), 121101 (2012).
[CrossRef]

Kato, J.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

Kawata, S.

Kim, P.-S.

Kirber, M.

Koch, J.

Kosicki, B.

Koss, B. A.

J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[CrossRef]

Lasser, T.

Lee, G.

Leitgeb, R. A.

Leutenegger, M.

Li, B.

J. Zhao, B. Li, H. Zhao, Y. Hu, W. Wang, Y. Wang, “Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11 beam,” Opt. Commun. 296, 95–100 (2013).
[CrossRef]

Li, H.

Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, “High-speed spectrally resolved multifocal multiphoton microscopy,” Appl. Phys. B 99(4), 633–637 (2010).
[CrossRef]

Li, K.

Li, X.

Li, Y.

Li, Y. P.

Lin, H.

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Liu, L.

C. Zhou, L. Liu, “Simple equations for the calculation of a multilevel phase grating for Talbot array illumination,” Opt. Commun. 115(1–2), 40–44 (1995).
[CrossRef]

Lohmann, A. W.

Lou, K.

Ma, J.

Ma, W.

J. Chen, X. Gao, L. Zhu, Q. Xu, W. Ma, “The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams,” Opt. Commun. 318, 100–104 (2014).
[CrossRef]

Martínez, J. L.

McGonagle, W.

Merenda, F.

Minamikawa, T.

Moreno, I.

Morita, R.

Murakami, N.

Nielsen, T.

T. Nielsen, M. Fricke, D. Hellweg, P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201(3), 368–376 (2001).
[CrossRef] [PubMed]

Niu, H.

Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, “High-speed spectrally resolved multifocal multiphoton microscopy,” Appl. Phys. B 99(4), 633–637 (2010).
[CrossRef]

Obata, K.

Oh, C.-H.

Oka, K.

Padgett, M.

Padgett, M. J.

Pavone, F. S.

Piestun, R.

Portera-Cailliau, C.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Qi, J.

Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, “High-speed spectrally resolved multifocal multiphoton microscopy,” Appl. Phys. B 99(4), 633–637 (2010).
[CrossRef]

Qian, S.

Qu, J.

Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, “High-speed spectrally resolved multifocal multiphoton microscopy,” Appl. Phys. B 99(4), 633–637 (2010).
[CrossRef]

Rao, R.

Reich, R.

Richards, B.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Rohner, J.

Ruocco, G.

Sacconi, L.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Sakamoto, M.

Salathé, R.-P.

Saxton, W. O.

R. W. Gerchberg, W. O. Saxton, “Phase determination for image and diffraction plane pictures in the electron microscope,” Optik (Stuttg.) 34(3), 275–284 (1971).

Schneider, T.

Schonbrun, E.

Shao, Y.

Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, “High-speed spectrally resolved multifocal multiphoton microscopy,” Appl. Phys. B 99(4), 633–637 (2010).
[CrossRef]

Shi, P.

So, P. T. C.

Song, S. H.

Squier, J. A.

Stankovic, S.

Sui, G.

Sun, H.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

Taghizadeh, M. R.

Takeyasu, N.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Thomas, J. A.

Tschudi, T.

Tu, C.

von Freymann, G.

E. H. Waller, G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express 21(18), 21708–21713 (2013).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Waller, E. H.

Wang, G.

J. Chen, Q. Xu, G. Wang, “A four-quadrant phase filter for creating two focusing spots,” Opt. Commun. 285(6), 900–904 (2012).
[CrossRef]

Wang, H. T.

Wang, S.

Wang, W.

J. Zhao, B. Li, H. Zhao, Y. Hu, W. Wang, Y. Wang, “Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11 beam,” Opt. Commun. 296, 95–100 (2013).
[CrossRef]

Wang, Y.

J. Zhao, B. Li, H. Zhao, Y. Hu, W. Wang, Y. Wang, “Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11 beam,” Opt. Commun. 296, 95–100 (2013).
[CrossRef]

Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, “High-speed spectrally resolved multifocal multiphoton microscopy,” Appl. Phys. B 99(4), 633–637 (2010).
[CrossRef]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Weng, X.

Wiseman, P. W.

Wolf, E.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Wu, J.

Wulff, K. D.

Xavier, J.

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100(12), 121101 (2012).
[CrossRef]

Xu, G.

Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, “High-speed spectrally resolved multifocal multiphoton microscopy,” Appl. Phys. B 99(4), 633–637 (2010).
[CrossRef]

Xu, Q.

J. Chen, X. Gao, L. Zhu, Q. Xu, W. Ma, “The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams,” Opt. Commun. 318, 100–104 (2014).
[CrossRef]

J. Chen, Q. Xu, G. Wang, “A four-quadrant phase filter for creating two focusing spots,” Opt. Commun. 285(6), 900–904 (2012).
[CrossRef]

Yang, N.

Yin, X.

Yu, J.

Yu, Y.

J. Chen, Y. Yu, “The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective,” Opt. Commun. 283(9), 1655–1660 (2010).
[CrossRef]

Zalevsky, Z.

Zhan, Q.

Zhang, H.

Zhang, X. B.

Zhao, H.

J. Zhao, B. Li, H. Zhao, Y. Hu, W. Wang, Y. Wang, “Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11 beam,” Opt. Commun. 296, 95–100 (2013).
[CrossRef]

Zhao, J.

J. Zhao, B. Li, H. Zhao, Y. Hu, W. Wang, Y. Wang, “Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11 beam,” Opt. Commun. 296, 95–100 (2013).
[CrossRef]

Zhou, C.

Zhu, L.

J. Chen, X. Gao, L. Zhu, Q. Xu, W. Ma, “The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams,” Opt. Commun. 318, 100–104 (2014).
[CrossRef]

Zhu, L.-W.

Zhuang, S.

Appl. Opt.

Appl. Phys. B

Y. Shao, J. Qu, H. Li, Y. Wang, J. Qi, G. Xu, H. Niu, “High-speed spectrally resolved multifocal multiphoton microscopy,” Appl. Phys. B 99(4), 633–637 (2010).
[CrossRef]

Appl. Phys. Lett.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[CrossRef]

H. Lin, M. Gu, “Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam,” Appl. Phys. Lett. 102(8), 084103 (2013).
[CrossRef]

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100(12), 121101 (2012).
[CrossRef]

J. Microsc.

T. Nielsen, M. Fricke, D. Hellweg, P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201(3), 368–376 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Nat. Methods

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).
[CrossRef] [PubMed]

Nature

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Commun.

J. E. Curtis, B. A. Koss, D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002).
[CrossRef]

J. Chen, Q. Xu, G. Wang, “A four-quadrant phase filter for creating two focusing spots,” Opt. Commun. 285(6), 900–904 (2012).
[CrossRef]

J. Chen, Y. Yu, “The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective,” Opt. Commun. 283(9), 1655–1660 (2010).
[CrossRef]

J. Zhao, B. Li, H. Zhao, Y. Hu, W. Wang, Y. Wang, “Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11 beam,” Opt. Commun. 296, 95–100 (2013).
[CrossRef]

J. Chen, X. Gao, L. Zhu, Q. Xu, W. Ma, “The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams,” Opt. Commun. 318, 100–104 (2014).
[CrossRef]

C. Zhou, L. Liu, “Simple equations for the calculation of a multilevel phase grating for Talbot array illumination,” Opt. Commun. 115(1–2), 40–44 (1995).
[CrossRef]

Opt. Express

D. N. Fittinghoff, P. W. Wiseman, J. A. Squier, “Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy,” Opt. Express 7(8), 273–279 (2000).
[CrossRef] [PubMed]

R. L. Eriksen, V. R. Daria, J. Gluckstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002).
[CrossRef] [PubMed]

A. Jesacher, M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
[CrossRef] [PubMed]

N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008).
[CrossRef] [PubMed]

T. Minamikawa, M. Hashimoto, K. Fujita, S. Kawata, T. Araki, “Multi-focus excitation coherent anti-Stokes Raman scattering (CARS) microscopy and its applications for real-time imaging,” Opt. Express 17(12), 9526–9536 (2009).
[CrossRef] [PubMed]

D. Engström, A. Frank, J. Backsten, M. Goksör, J. Bengtsson, “Grid-free 3D multiple spot generation with an efficient single-plane FFT-based algorithm,” Opt. Express 17(12), 9989–10000 (2009).
[CrossRef] [PubMed]

K. Obata, J. Koch, U. Hinze, B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010).
[CrossRef] [PubMed]

E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13(10), 3777–3786 (2005).
[CrossRef] [PubMed]

M. Leutenegger, R. Rao, R. A. Leitgeb, T. Lasser, “Fast focus field calculations,” Opt. Express 14(23), 11277–11291 (2006).
[CrossRef] [PubMed]

R. Di Leonardo, F. Ianni, G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
[CrossRef] [PubMed]

F. Merenda, J. Rohner, J.-M. Fournier, R.-P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007).
[CrossRef] [PubMed]

K. Bahlmann, P. T. C. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, K. Bellve, “Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz,” Opt. Express 15(17), 10991–10998 (2007).
[CrossRef] [PubMed]

M. Cai, C. Tu, H. Zhang, S. Qian, K. Lou, Y. Li, H. T. Wang, “Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields,” Opt. Express 21(25), 31469–31482 (2013).
[CrossRef] [PubMed]

D. R. Burnham, T. Schneider, D. T. Chiu, “Effects of aliasing on the fidelity of a two dimensional array of foci generated with a kinoform,” Opt. Express 19(18), 17121–17126 (2011).
[CrossRef] [PubMed]

H. Guo, G. Sui, X. Weng, X. Dong, Q. Hu, S. Zhuang, “Control of the multifocal properties of composite vector beams in tightly focusing systems,” Opt. Express 19(24), 24067–24077 (2011).
[CrossRef] [PubMed]

E. H. Waller, G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express 21(18), 21708–21713 (2013).
[CrossRef] [PubMed]

Opt. Lett.

M. Gu, H. Lin, X. Li, “Parallel multiphoton microscopy with cylindrically polarized multifocal arrays,” Opt. Lett. 38(18), 3627–3630 (2013).
[CrossRef] [PubMed]

M. Sakamoto, K. Oka, R. Morita, N. Murakami, “Stable and flexible ring-shaped optical-lattice generation by use of axially symmetric polarization elements,” Opt. Lett. 38(18), 3661–3664 (2013).
[CrossRef] [PubMed]

Q. Zhan, “Properties of circularly polarized vortex beams,” Opt. Lett. 31(7), 867–869 (2006).
[CrossRef] [PubMed]

D. N. Fittinghoff, J. A. Squier, “Time-decorrelated multifocal array for multiphoton microscopy and micromachining,” Opt. Lett. 25(16), 1213–1215 (2000).
[CrossRef] [PubMed]

H. Lin, B. Jia, M. Gu, “Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication,” Opt. Lett. 36(3), 406–408 (2011).
[CrossRef] [PubMed]

K. Huang, P. Shi, G. W. Cao, K. Li, X. B. Zhang, Y. P. Li, “Vector-vortex Bessel-Gauss beams and their tightly focusing properties,” Opt. Lett. 36(6), 888–890 (2011).
[CrossRef] [PubMed]

H. Guo, X. Dong, X. Weng, G. Sui, N. Yang, S. Zhuang, “Multifocus with small size, uniform intensity, and nearly circular symmetry,” Opt. Lett. 36(12), 2200–2202 (2011).
[CrossRef] [PubMed]

L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, F. S. Pavone, “Multiphoton multifocal microscopy exploiting a diffractive optical element,” Opt. Lett. 28(20), 1918–1920 (2003).
[CrossRef] [PubMed]

G. Lee, S. H. Song, C.-H. Oh, P.-S. Kim, “Arbitrary structuring of two-dimensional photonic crystals by use of phase-only Fourier gratings,” Opt. Lett. 29(21), 2539–2541 (2004).
[CrossRef] [PubMed]

Optik (Stuttg.)

R. W. Gerchberg, W. O. Saxton, “Phase determination for image and diffraction plane pictures in the electron microscope,” Optik (Stuttg.) 34(3), 275–284 (1971).

Proc. R. Soc. Lond. A Math. Phys. Sci.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Science

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Phase distribution inside the back aperture of a MSA system with fractional Talbot parameter β = 5, and period number inside the objective aperture Nx = Ny = 20. (b) Enlarged phase distribution in one unit cell. (c) Intensity distribution on the focal plane. (d) Enlarged intensity distributions of one focal spot. (e) and (f) are the corresponding intensity cross-section profiles in (c) and (d), respectively. (Ix and Iy are the cross-section profiles in x and y direction, respectively).

Fig. 2
Fig. 2

(a) 2D intensity distribution (yz plane) in a meridional plane near focus with the same parameters in Fig. 1. (b) Intensity distribution (xy plane) on the plane of z = 1μm. (c) The 3D iso-intensity surfaces of one focal spot (I(x,y,z) = e-1…-4Imax).

Fig. 3
Fig. 3

Phase patterns inside the objective aperture of fractional Talbot phase-only modulation with (a) β = 5, (b) β = 15. (c) and (d) Corresponding intensity distributions on the focal plane. (e) Intensity cross-section profiles in (c) and (d), respectively.

Fig. 4
Fig. 4

Phase patterns of (a) a vortex beam with topological charge l = −1, (b) the multifocal phase, and (c) the combined phase. (d) Intensity distribution on the focal plane. (e) Enlarged image of one focal spot. (f) Intensity cross-section profiles of single focal spot generated by vortex beam without multifocal phase modulation (Iv), and with array phase in the arrays Ia1 with Δx = 2.95 μm, Ia2 with Δx = 4.43 μm, respectively

Fig. 5
Fig. 5

Phase patterns of (a) multifocal phase with β = 9, (b) spatially shifted vortex phase along x direction, (c) spatially shifted vortex phase along x and y directions. (d) and (g) are the intensity distributions on the focal plane with the combined multifocal and shifted vortex phase. (e) and (h) are the enlarged images of one spot. (f) and (i) are the iso-intenstiy surfaces given by the intensity at the half of the peak value, corresponding to (e) and (h), respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A( r )={ 1rR 0otherwise ,
E (x,y,z)= 0 α 0 2π [ U( θ,φ ) E t ( θ,φ ) ] ×exp{ik( x 2 + y 2 sinθcos[ tan 1 (y/x)φ]+zcosθ)}sinθdφdθ,
E ( x,y,z )= [ U( r,φ ) E t ( θ,φ ) exp(i k z z) / cosθ ]exp[ i( k x x+ k y y) ]d k x d k y =F{ U( k x , k y ) } E 0 ( x,y,z ),
E 0 ( x,y,z )=F{ E t ( θ,φ ) exp( i k z z ) / cosθ }.
Φ ( m , n , β ) = π 2 ( γ 1 β ) ( m 2 + n 2 ) ,
u ( x 0 , y 0 ) = rect ( x 0 Δ , y 0 Δ ) { h 1 = 0 β 1 h 2 = 0 β 1 δ ( x 0 h 1 d , y 0 h 2 d ) exp [ i ϕ ( h 1 , h 2 , β ) ] } ,
U ( x 0 , y 0 ) = u ( x 0 , y 0 ) n 1 n 2 δ ( x 0 n 1 Δ , y 0 n 2 Δ ) ,
| F { U ( k x , k y ) } | 2 = n 1 n 2 | c ( n 1 , n 2 , β ) | 2 I ( x n 1 Δ x , y n 2 Δ y ) ,
Δ x = N x λ 2 N A , Δ y = N y λ 2 N A ,
Φ( x 0 , y 0 )= n=1 N l n arctan( y 0 b n R x 0 a n R ) ,

Metrics