Abstract

To quantitatively approach the relationship between optical changes in an accommodated eye and the geometrical deformation of its crystalline lens, a long scan-depth anterior segment OCT equipped wavefront sensor was developed and integrated with a Badal system. With this system, accommodation was stimulated up to 6.0D in the left eye and also measured in the same eye for three subjects. High correlations between the accommodative responses of refractive power and the radius of the anterior lens surface were found for the three subjects (r>0.98). The change in spherical aberration was also highly correlated with the change in lens thickness (r>0.98). The measurement was very well repeated at a 2nd measurement session on the same day for the three subjects and after two weeks for one subject. The novelty of incorporating the Badal system into the OCT equipped wavefront sensor eliminated axial misalignment of the measurement system with the test eye due to accommodative vergence, as in the contralateral paradigm. The design also allowed the wavefront sensor to capture conjugated sharp Hartmann-Shack images in accommodated eyes to accurately analyze wavefront aberrations. In addition, this design extended the accommodation range up to 10.0D. By using this system, for the first time, we demonstrated linear relationships of the changes between the refractive power and the lens curvature and also between the spherical aberration and the lens thickness during accommodation in vivo. This new system provides an accurate and useful technique to quantitatively study accommodation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Young, “The Bakerian Lecture: On the mechanism of the eye,” Philos. Trans. R. Soc. London 91(0), 23–88 (1801).
    [CrossRef]
  2. H. von Helmholtz, “Über die Akkommodation des Auges,” Arch. Ophthalmol. 1, 1–74 (1855).
  3. E. F. Fincham, “The mechanism of accommodation,” Br. J. Ophthalmol. 8, 7–80 (1937).
  4. E. F. Fincham, “The proportion of ciliary muscular force required for accommodation,” J. Physiol. 128(1), 99–112 (1955).
    [PubMed]
  5. B. Graves, “The response of the lens capsules in the act of accommodation,” Trans. Am. Ophthalmol. Soc. 23, 184–198 (1925).
    [PubMed]
  6. D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
    [CrossRef] [PubMed]
  7. A. Glasser, “Accommodation: mechanism and measurement,” Ophthalmol. Clin. North Am. 19(1), 1–12 (2006).
    [PubMed]
  8. W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008).
    [CrossRef] [PubMed]
  9. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann–Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  10. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
    [CrossRef] [PubMed]
  11. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15(9), 2449–2456 (1998).
    [CrossRef]
  12. J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
    [CrossRef] [PubMed]
  13. S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134(6), 924–926 (2002).
    [CrossRef] [PubMed]
  14. C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vis. Sci. 80(2), 151–158 (2003).
    [CrossRef] [PubMed]
  15. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
    [CrossRef] [PubMed]
  16. S. Plainis, H. S. Ginis, A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
    [CrossRef] [PubMed]
  17. A. Glasser, M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
    [CrossRef] [PubMed]
  18. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
    [PubMed]
  19. J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
    [CrossRef] [PubMed]
  20. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  21. D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11(5), 419–425 (1991).
    [CrossRef] [PubMed]
  22. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
    [CrossRef] [PubMed]
  23. C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
    [CrossRef] [PubMed]
  24. G. Shi, Y. Wang, Y. Yuan, L. Wei, F. Lv, Y. Zhang, “Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation,” J. Biomed. Opt. 17(12), 120501 (2012).
    [CrossRef] [PubMed]
  25. Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
    [CrossRef] [PubMed]
  26. H. Wang, Y. Pan, A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett. 33(22), 2632–2634 (2008).
    [CrossRef] [PubMed]
  27. R. Cubalchini, “Modal wave-front estimation from phase derivative measurements,” J. Opt. Soc. Am. 69(7), 972–977 (1979).
    [CrossRef]
  28. V. N. Mahajan, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” Appl. Opt. 33(34), 8121–8124 (1994).
    [CrossRef] [PubMed]
  29. L. N. Thibos, R. A. Applegate, J. T. Schweigling, R. WebbVSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
  30. M. Zhao, A. N. Kuo, J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010).
    [CrossRef] [PubMed]
  31. T. O. Salmon, C. van de Pol, “Evaluation of a clinical aberrometer for lower-order accuracy and repeatability, higher-order repeatability, and instrument myopia,” Optometry 76(8), 461–472 (2005).
    [CrossRef] [PubMed]

2013 (1)

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

2012 (2)

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

G. Shi, Y. Wang, Y. Yuan, L. Wei, F. Lv, Y. Zhang, “Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation,” J. Biomed. Opt. 17(12), 120501 (2012).
[CrossRef] [PubMed]

2010 (1)

2008 (2)

2006 (1)

A. Glasser, “Accommodation: mechanism and measurement,” Ophthalmol. Clin. North Am. 19(1), 1–12 (2006).
[PubMed]

2005 (2)

S. Plainis, H. S. Ginis, A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
[CrossRef] [PubMed]

T. O. Salmon, C. van de Pol, “Evaluation of a clinical aberrometer for lower-order accuracy and repeatability, higher-order repeatability, and instrument myopia,” Optometry 76(8), 461–472 (2005).
[CrossRef] [PubMed]

2004 (1)

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

2003 (1)

C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vis. Sci. 80(2), 151–158 (2003).
[CrossRef] [PubMed]

2002 (2)

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134(6), 924–926 (2002).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schweigling, R. WebbVSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).

2000 (1)

J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
[CrossRef] [PubMed]

1999 (1)

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

1998 (3)

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[CrossRef] [PubMed]

A. Glasser, M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[CrossRef] [PubMed]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15(9), 2449–2456 (1998).
[CrossRef]

1997 (1)

1995 (1)

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[CrossRef] [PubMed]

1994 (3)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

V. N. Mahajan, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” Appl. Opt. 33(34), 8121–8124 (1994).
[CrossRef] [PubMed]

J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann–Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11(5), 419–425 (1991).
[CrossRef] [PubMed]

1979 (1)

1955 (1)

E. F. Fincham, “The proportion of ciliary muscular force required for accommodation,” J. Physiol. 128(1), 99–112 (1955).
[PubMed]

1937 (1)

E. F. Fincham, “The mechanism of accommodation,” Br. J. Ophthalmol. 8, 7–80 (1937).

1925 (1)

B. Graves, “The response of the lens capsules in the act of accommodation,” Trans. Am. Ophthalmol. Soc. 23, 184–198 (1925).
[PubMed]

1855 (1)

H. von Helmholtz, “Über die Akkommodation des Auges,” Arch. Ophthalmol. 1, 1–74 (1855).

1801 (1)

T. Young, “The Bakerian Lecture: On the mechanism of the eye,” Philos. Trans. R. Soc. London 91(0), 23–88 (1801).
[CrossRef]

Applegate, R. A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schweigling, R. WebbVSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).

Atchison, D. A.

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[CrossRef] [PubMed]

Barnett, J. K.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

Bille, J. F.

Boppart, S. A.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[CrossRef] [PubMed]

Bouma, B.

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[CrossRef] [PubMed]

Bouma, B. E.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

Brezinski, M. E.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[CrossRef] [PubMed]

Burns, S. A.

Campbell, M. C.

A. Glasser, M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008).
[CrossRef] [PubMed]

Chen, Q.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

Cheng, H.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

Cox, M. J.

C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vis. Sci. 80(2), 151–158 (2003).
[CrossRef] [PubMed]

Cubalchini, R.

Du, C.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

Fincham, E. F.

E. F. Fincham, “The proportion of ciliary muscular force required for accommodation,” J. Physiol. 128(1), 99–112 (1955).
[PubMed]

E. F. Fincham, “The mechanism of accommodation,” Br. J. Ophthalmol. 8, 7–80 (1937).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujikado, T.

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134(6), 924–926 (2002).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11(5), 419–425 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ginis, H. S.

S. Plainis, H. S. Ginis, A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
[CrossRef] [PubMed]

Glasser, A.

A. Glasser, “Accommodation: mechanism and measurement,” Ophthalmol. Clin. North Am. 19(1), 1–12 (2006).
[PubMed]

A. Glasser, M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[CrossRef] [PubMed]

Goelz, S.

Graves, B.

B. Graves, “The response of the lens capsules in the act of accommodation,” Trans. Am. Ophthalmol. Soc. 23, 184–198 (1925).
[PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grimm, B.

Hazel, C. A.

C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vis. Sci. 80(2), 151–158 (2003).
[CrossRef] [PubMed]

He, J. C.

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hirohara, Y.

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134(6), 924–926 (2002).
[CrossRef] [PubMed]

Huang, D.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11(5), 419–425 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

M. Zhao, A. N. Kuo, J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Kasthurirangan, S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

Kuo, A. N.

Kuroda, T.

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134(6), 924–926 (2002).
[CrossRef] [PubMed]

Li, M.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

Lian, Y.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

Liang, J.

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11(5), 419–425 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lu, F.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

Lv, F.

G. Shi, Y. Wang, Y. Yuan, L. Wei, F. Lv, Y. Zhang, “Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation,” J. Biomed. Opt. 17(12), 120501 (2012).
[CrossRef] [PubMed]

Maeda, N.

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134(6), 924–926 (2002).
[CrossRef] [PubMed]

Mahajan, V. N.

Marcos, S.

Marsack, J. D.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

Mihashi, T.

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134(6), 924–926 (2002).
[CrossRef] [PubMed]

Ninomiya, S.

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134(6), 924–926 (2002).
[CrossRef] [PubMed]

Oshika, T.

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134(6), 924–926 (2002).
[CrossRef] [PubMed]

Pallikaris, A.

S. Plainis, H. S. Ginis, A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
[CrossRef] [PubMed]

Pan, Y.

Pitris, C.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[CrossRef] [PubMed]

Plainis, S.

S. Plainis, H. S. Ginis, A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
[CrossRef] [PubMed]

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11(5), 419–425 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qu, J.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

Rollins, A. M.

Roorda, A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

Salmon, T. O.

T. O. Salmon, C. van de Pol, “Evaluation of a clinical aberrometer for lower-order accuracy and repeatability, higher-order repeatability, and instrument myopia,” Optometry 76(8), 461–472 (2005).
[CrossRef] [PubMed]

Schuman, J. S.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schweigling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schweigling, R. WebbVSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).

Shao, Y.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

Shen, M.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

Shi, G.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

G. Shi, Y. Wang, Y. Yuan, L. Wei, F. Lv, Y. Zhang, “Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation,” J. Biomed. Opt. 17(12), 120501 (2012).
[CrossRef] [PubMed]

Southern, J. F.

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Strang, N. C.

C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vis. Sci. 80(2), 151–158 (2003).
[CrossRef] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tano, Y.

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134(6), 924–926 (2002).
[CrossRef] [PubMed]

Tao, A.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

Tearney, G. J.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schweigling, R. WebbVSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).

van de Pol, C.

T. O. Salmon, C. van de Pol, “Evaluation of a clinical aberrometer for lower-order accuracy and repeatability, higher-order repeatability, and instrument myopia,” Optometry 76(8), 461–472 (2005).
[CrossRef] [PubMed]

Vilupuru, A. S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

von Helmholtz, H.

H. von Helmholtz, “Über die Akkommodation des Auges,” Arch. Ophthalmol. 1, 1–74 (1855).

Wang, H.

Wang, J.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11(5), 419–425 (1991).
[CrossRef] [PubMed]

Wang, M. R.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

Wang, Y.

G. Shi, Y. Wang, Y. Yuan, L. Wei, F. Lv, Y. Zhang, “Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation,” J. Biomed. Opt. 17(12), 120501 (2012).
[CrossRef] [PubMed]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schweigling, R. WebbVSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).

Webb, R. H.

Wei, L.

G. Shi, Y. Wang, Y. Yuan, L. Wei, F. Lv, Y. Zhang, “Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation,” J. Biomed. Opt. 17(12), 120501 (2012).
[CrossRef] [PubMed]

Williams, D. R.

Young, T.

T. Young, “The Bakerian Lecture: On the mechanism of the eye,” Philos. Trans. R. Soc. London 91(0), 23–88 (1801).
[CrossRef]

Yuan, Y.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

G. Shi, Y. Wang, Y. Yuan, L. Wei, F. Lv, Y. Zhang, “Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation,” J. Biomed. Opt. 17(12), 120501 (2012).
[CrossRef] [PubMed]

Zhang, Y.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

G. Shi, Y. Wang, Y. Yuan, L. Wei, F. Lv, Y. Zhang, “Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation,” J. Biomed. Opt. 17(12), 120501 (2012).
[CrossRef] [PubMed]

Zhao, M.

Zhu, D.

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (1)

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134(6), 924–926 (2002).
[CrossRef] [PubMed]

Ann. N. Y. Acad. Sci. (1)

J. G. Fujimoto, B. Bouma, G. J. Tearney, S. A. Boppart, C. Pitris, J. F. Southern, M. E. Brezinski, “New technology for high-speed and high-resolution optical coherence tomography,” Ann. N. Y. Acad. Sci. 838(1), 95–107 (1998).
[CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (2)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

H. von Helmholtz, “Über die Akkommodation des Auges,” Arch. Ophthalmol. 1, 1–74 (1855).

Br. J. Ophthalmol. (1)

E. F. Fincham, “The mechanism of accommodation,” Br. J. Ophthalmol. 8, 7–80 (1937).

Clin. Exp. Optom. (1)

W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008).
[CrossRef] [PubMed]

Heart (1)

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

Y. Yuan, Y. Shao, A. Tao, M. Shen, J. Wang, G. Shi, Q. Chen, D. Zhu, Y. Lian, J. Qu, Y. Zhang, F. Lu, “Ocular anterior segment biometry and high-order wavefront aberrations during accommodation,” Invest. Ophthalmol. Vis. Sci. 54(10), 7028–7037 (2013).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

G. Shi, Y. Wang, Y. Yuan, L. Wei, F. Lv, Y. Zhang, “Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation,” J. Biomed. Opt. 17(12), 120501 (2012).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Physiol. (1)

E. F. Fincham, “The proportion of ciliary muscular force required for accommodation,” J. Physiol. 128(1), 99–112 (1955).
[PubMed]

J. Refract. Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schweigling, R. WebbVSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).

J. Vis. (2)

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

S. Plainis, H. S. Ginis, A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11(5), 419–425 (1991).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (1)

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[CrossRef] [PubMed]

Ophthalmol. Clin. North Am. (1)

A. Glasser, “Accommodation: mechanism and measurement,” Ophthalmol. Clin. North Am. 19(1), 1–12 (2006).
[PubMed]

Ophthalmology (1)

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology 119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optom. Vis. Sci. (1)

C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vis. Sci. 80(2), 151–158 (2003).
[CrossRef] [PubMed]

Optometry (1)

T. O. Salmon, C. van de Pol, “Evaluation of a clinical aberrometer for lower-order accuracy and repeatability, higher-order repeatability, and instrument myopia,” Optometry 76(8), 461–472 (2005).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London (1)

T. Young, “The Bakerian Lecture: On the mechanism of the eye,” Philos. Trans. R. Soc. London 91(0), 23–88 (1801).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Trans. Am. Ophthalmol. Soc. (1)

B. Graves, “The response of the lens capsules in the act of accommodation,” Trans. Am. Ophthalmol. Soc. 23, 184–198 (1925).
[PubMed]

Vision Res. (2)

J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
[CrossRef] [PubMed]

A. Glasser, M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principal sketch of the optical coherence tomography system equipped wavefront sensor.

Fig. 2
Fig. 2

Hartmann-Shack image (a, d), higher order wavefront aberration map at a 4.0mm diameter pupil area (b, e) and uncorrected original anterior segment image (c, f) for a subject at 0.0D (a-c) and 6.0D (d-f) accommodative levels. The x-y axes of wavefront aberration maps represent pupil axes in mm, and the z axis indicates the wavefront aberrations in μm.

Fig. 3
Fig. 3

The changes in accommodative response of refractive power (a) and spherical aberration (b) with the changes in radius of anterior lens surface and lens thickness respectively for three subjects when accommodation was changed from 0D to 6D.

Fig. 4
Fig. 4

Accommodative changes in the Zernike aberrations from the 2nd order up to the 5th order (a, c) and the anterior segment parameters (b, d) for two subjects S1 (a-b) and S2 (c-d) at four accommodation levels from 0.0D to 6.0D. Each symbol indicates mean of three measurements with the error bar representing standard error of the mean.

Fig. 5
Fig. 5

The changes in accommodative response of refractive power (a & c) and spherical aberration (b & d) with the changes in radius of anterior lens surface and lens thickness respectively for subjects S2 (a & b) and S3 (c & d) when accommodation was changed from 0D to 6D.

Fig. 6
Fig. 6

The changes in accommodative response of refractive power (a) and spherical aberration (b) with the changes in radius of anterior lens surface and lens thickness respectively for subjects S3 when accommodation was changed from 0D to 6D.

Metrics