Abstract

An electrically switchable diffraction grating (ESDG) based on cholesteric liquid crystal (CLC) filled into the cell with slit electrodes is demonstrated in this study. On one hand, with low voltage, the ESDG has high second order diffraction efficiency because of the alternating planar and fingerprint textures. With high voltage, on the other hand, the ESDG has high first order diffraction efficiency because of the alternating planar and homeotropic textures. The first and second order diffraction efficiencies of ESDG are electrically swapped. The maximum diffraction efficiency of the ESDG is approximately 32% at each grating mode.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(3A), 1334–1338 (2001).
    [CrossRef]
  2. S. N. Lee, L. C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
    [CrossRef]
  3. S. W. Kang, S. Sprunt, L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
    [CrossRef]
  4. J. H. Park, I. C. Khoo, C. J. Yu, M. S. Jung, S. D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
    [CrossRef]
  5. Z. He, S. Sato, “Polarization properties of inversely twisted nematic liquid-crystal gratings,” Appl. Opt. 37(28), 6755–6763 (1998).
    [CrossRef] [PubMed]
  6. M. Zhu, G. Carbone, C. Rosenblatt, “Electrically switchable polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
    [CrossRef]
  7. J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electrooptically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
    [CrossRef]
  8. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
    [CrossRef] [PubMed]
  9. A. Y. G. Fuh, C. H. Lin, C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
    [CrossRef]
  10. D. Subacius, S. V. Shiyanovskii, P. Bos, O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
    [CrossRef]
  11. D. Subacius, P. J. Bos, O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
    [CrossRef]
  12. W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
    [CrossRef]
  13. I. A. Yao, C. H. Liaw, S. H. Chen, J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys. 96(3), 1760–1762 (2004).
    [CrossRef]
  14. J. J. Wu, F. C. Chen, Y. S. Wu, S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(10), 6108–6109 (2002).
    [CrossRef]
  15. C. H. Lin, A. Y. G. Fuh, T. S. Mo, C. Y. Huang, “Polymer-stabilized reflective fingerprint cholesteric texture grating,” Jpn. J. Appl. Phys. 41(12), 7441–7446 (2002).
    [CrossRef]

2006 (2)

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[CrossRef] [PubMed]

M. Zhu, G. Carbone, C. Rosenblatt, “Electrically switchable polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
[CrossRef]

2005 (1)

J. H. Park, I. C. Khoo, C. J. Yu, M. S. Jung, S. D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

2004 (1)

I. A. Yao, C. H. Liaw, S. H. Chen, J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys. 96(3), 1760–1762 (2004).
[CrossRef]

2002 (3)

J. J. Wu, F. C. Chen, Y. S. Wu, S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(10), 6108–6109 (2002).
[CrossRef]

C. H. Lin, A. Y. G. Fuh, T. S. Mo, C. Y. Huang, “Polymer-stabilized reflective fingerprint cholesteric texture grating,” Jpn. J. Appl. Phys. 41(12), 7441–7446 (2002).
[CrossRef]

A. Y. G. Fuh, C. H. Lin, C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
[CrossRef]

2001 (1)

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(3A), 1334–1338 (2001).
[CrossRef]

2000 (1)

S. W. Kang, S. Sprunt, L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

1998 (2)

S. N. Lee, L. C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
[CrossRef]

Z. He, S. Sato, “Polarization properties of inversely twisted nematic liquid-crystal gratings,” Appl. Opt. 37(28), 6755–6763 (1998).
[CrossRef] [PubMed]

1997 (2)

D. Subacius, S. V. Shiyanovskii, P. Bos, O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

D. Subacius, P. J. Bos, O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[CrossRef]

1995 (1)

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electrooptically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

1970 (1)

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[CrossRef]

Bos, P.

D. Subacius, S. V. Shiyanovskii, P. Bos, O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

Bos, P. J.

D. Subacius, P. J. Bos, O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electrooptically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Carbone, G.

M. Zhu, G. Carbone, C. Rosenblatt, “Electrically switchable polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
[CrossRef]

Chen, F. C.

J. J. Wu, F. C. Chen, Y. S. Wu, S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(10), 6108–6109 (2002).
[CrossRef]

Chen, J.

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electrooptically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Chen, S. H.

I. A. Yao, C. H. Liaw, S. H. Chen, J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys. 96(3), 1760–1762 (2004).
[CrossRef]

J. J. Wu, F. C. Chen, Y. S. Wu, S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(10), 6108–6109 (2002).
[CrossRef]

Chien, L. C.

S. W. Kang, S. Sprunt, L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

S. N. Lee, L. C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
[CrossRef]

Fuh, A. Y. G.

A. Y. G. Fuh, C. H. Lin, C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
[CrossRef]

C. H. Lin, A. Y. G. Fuh, T. S. Mo, C. Y. Huang, “Polymer-stabilized reflective fingerprint cholesteric texture grating,” Jpn. J. Appl. Phys. 41(12), 7441–7446 (2002).
[CrossRef]

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(3A), 1334–1338 (2001).
[CrossRef]

Glebov, L. B.

He, Z.

Helfrich, W.

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[CrossRef]

Hsieh, M. F.

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(3A), 1334–1338 (2001).
[CrossRef]

Huang, C. Y.

A. Y. G. Fuh, C. H. Lin, C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
[CrossRef]

C. H. Lin, A. Y. G. Fuh, T. S. Mo, C. Y. Huang, “Polymer-stabilized reflective fingerprint cholesteric texture grating,” Jpn. J. Appl. Phys. 41(12), 7441–7446 (2002).
[CrossRef]

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(3A), 1334–1338 (2001).
[CrossRef]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electrooptically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Jung, M. S.

J. H. Park, I. C. Khoo, C. J. Yu, M. S. Jung, S. D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

Kang, S. W.

S. W. Kang, S. Sprunt, L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

Khoo, I. C.

J. H. Park, I. C. Khoo, C. J. Yu, M. S. Jung, S. D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

Lavrentovich, O. D.

D. Subacius, P. J. Bos, O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[CrossRef]

D. Subacius, S. V. Shiyanovskii, P. Bos, O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

Lee, S. D.

J. H. Park, I. C. Khoo, C. J. Yu, M. S. Jung, S. D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

Lee, S. N.

S. N. Lee, L. C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
[CrossRef]

Liaw, C. H.

I. A. Yao, C. H. Liaw, S. H. Chen, J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys. 96(3), 1760–1762 (2004).
[CrossRef]

Lin, C. H.

C. H. Lin, A. Y. G. Fuh, T. S. Mo, C. Y. Huang, “Polymer-stabilized reflective fingerprint cholesteric texture grating,” Jpn. J. Appl. Phys. 41(12), 7441–7446 (2002).
[CrossRef]

A. Y. G. Fuh, C. H. Lin, C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
[CrossRef]

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(3A), 1334–1338 (2001).
[CrossRef]

Mo, T. S.

C. H. Lin, A. Y. G. Fuh, T. S. Mo, C. Y. Huang, “Polymer-stabilized reflective fingerprint cholesteric texture grating,” Jpn. J. Appl. Phys. 41(12), 7441–7446 (2002).
[CrossRef]

Park, J. H.

J. H. Park, I. C. Khoo, C. J. Yu, M. S. Jung, S. D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

Rosenblatt, C.

M. Zhu, G. Carbone, C. Rosenblatt, “Electrically switchable polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
[CrossRef]

Rotar, V.

Sarkissian, H.

Sato, S.

Serak, S. V.

Shiyanovskii, S. V.

D. Subacius, S. V. Shiyanovskii, P. Bos, O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

Sprunt, S.

S. W. Kang, S. Sprunt, L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

S. N. Lee, L. C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
[CrossRef]

Subacius, D.

D. Subacius, S. V. Shiyanovskii, P. Bos, O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

D. Subacius, P. J. Bos, O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[CrossRef]

Tabiryan, N. V.

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electrooptically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Wu, J. J.

I. A. Yao, C. H. Liaw, S. H. Chen, J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys. 96(3), 1760–1762 (2004).
[CrossRef]

J. J. Wu, F. C. Chen, Y. S. Wu, S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(10), 6108–6109 (2002).
[CrossRef]

Wu, Y. S.

J. J. Wu, F. C. Chen, Y. S. Wu, S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(10), 6108–6109 (2002).
[CrossRef]

Yao, I. A.

I. A. Yao, C. H. Liaw, S. H. Chen, J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys. 96(3), 1760–1762 (2004).
[CrossRef]

Yu, C. J.

J. H. Park, I. C. Khoo, C. J. Yu, M. S. Jung, S. D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

Zeldovich, B. Y.

Zhu, M.

M. Zhu, G. Carbone, C. Rosenblatt, “Electrically switchable polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

M. Zhu, G. Carbone, C. Rosenblatt, “Electrically switchable polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88(25), 253502 (2006).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, D. L. Johnson, “An electrooptically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

S. N. Lee, L. C. Chien, S. Sprunt, “Polymer-stabilized diffraction gratings from cholesteric liquid crystals,” Appl. Phys. Lett. 72(8), 885–887 (1998).
[CrossRef]

S. W. Kang, S. Sprunt, L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

J. H. Park, I. C. Khoo, C. J. Yu, M. S. Jung, S. D. Lee, “Formation of binary phase gratings in photopolymer-liquid crystal composites by a surface-controlled anisotropic phase separation,” Appl. Phys. Lett. 86(2), 021906 (2005).
[CrossRef]

D. Subacius, S. V. Shiyanovskii, P. Bos, O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

D. Subacius, P. J. Bos, O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[CrossRef]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[CrossRef]

J. Appl. Phys. (1)

I. A. Yao, C. H. Liaw, S. H. Chen, J. J. Wu, “Direction-tunable cholesteric phase gratings,” J. Appl. Phys. 96(3), 1760–1762 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (4)

J. J. Wu, F. C. Chen, Y. S. Wu, S. H. Chen, “Phase gratings in pretilted homeotropic cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 41(10), 6108–6109 (2002).
[CrossRef]

C. H. Lin, A. Y. G. Fuh, T. S. Mo, C. Y. Huang, “Polymer-stabilized reflective fingerprint cholesteric texture grating,” Jpn. J. Appl. Phys. 41(12), 7441–7446 (2002).
[CrossRef]

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(3A), 1334–1338 (2001).
[CrossRef]

A. Y. G. Fuh, C. H. Lin, C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jpn. J. Appl. Phys. 41(1), 211–218 (2002).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of the ESDG cell.

Fig. 2
Fig. 2

(a) First and second order diffraction efficiencies of the FPG at various applied voltages. The cell thickness is 18 μm and the CLC pitch length is 20 μm; (b) First and second order diffraction efficiencies of the NPG with slit electrodes at various applied voltages. The cell thickness is 18 μm and the slit width is 20 20 μm.

Fig. 3
Fig. 3

Schematic demonstration of the CLC textures in the ESDG cell: (a) without voltage, (b) with low voltage, and (c) with high voltage.

Fig. 4
Fig. 4

First and second order MDEs of the ESDG at various slit electrode widths. (a) 1.6 V is applied to the ESDG and (b) 8 V is applied to the ESDG. The cell thickness is 16 μm and the slit width is 20 μm.

Fig. 5
Fig. 5

POM images of the ESDG at (a) 0, (b) 1.6, and (c) 8 V. The cell thickness is 16 μm and the slit width is 20 μm.

Fig. 6
Fig. 6

Diffraction patterns of (a) the NPG formed by filling the nematic into the antiparallel-rubbed cell with slit electrode and (b) the FPG formed by filling the CLC into the antiparallel-rubbed cell with whole electrodes on both the top and bottom substrates. The applied voltage in (a) and (b) is 2 V. Diffraction patterns of the ESDG at (a) 0, (b) 1.6, and (c) 8 V.

Metrics