Abstract

We report on experimental examination of two-photon fluorescence excitation (TPFE) at the focus of a spatially chirped femtosecond laser beam, which reveals an unexpected tilted peak intensity distribution in the focal spot. Our theoretical calculation shows that the tilting of the peak intensity distribution originates from the fact that along the optical axis of objective lens, the spatiotemporally focused pulse reaches its shortest duration exactly at the focal plane. However, when moving away from the optical axis along the direction of spatial chirp of the incident pulse, the pulse reaches its shortest duration either before or after the focal plane, depending on whether the pulse duration is measured above or below the optical axis as well as the sign of the spatial chirp. The tilting of the peak intensity distribution in the focal spot of the spatiotemporally focused femtosecond laser beam can play important roles in applications such as femtosecond laser micromachining and bio-imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [CrossRef] [PubMed]
  3. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
    [CrossRef] [PubMed]
  4. W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1(4), e6 (2012).
    [CrossRef]
  5. Y. Cheng, K. Sugioka, K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29(17), 2007–2009 (2004).
    [CrossRef] [PubMed]
  6. F. Chen, J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8(2), 251–275 (2014).
  7. F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
    [CrossRef]
  8. K. Sugioka, Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip 12(19), 3576–3589 (2012).
    [CrossRef] [PubMed]
  9. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
    [CrossRef] [PubMed]
  10. R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  11. Y. Shimotsuma, P. G. Kazansky, J. Qiu, K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [CrossRef] [PubMed]
  12. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [CrossRef] [PubMed]
  13. S. Kanehira, J. Si, J. Qiu, K. Fujita, K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
    [CrossRef] [PubMed]
  14. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
    [CrossRef] [PubMed]
  15. S. K. Sundaram, E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [CrossRef] [PubMed]
  16. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
    [CrossRef]
  17. W. Yang, P. G. Kazansky, Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
    [CrossRef]
  18. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
    [CrossRef]
  19. P. S. Salter, M. J. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett. 101(14), 141109 (2012).
    [CrossRef]
  20. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
    [CrossRef]
  21. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
    [CrossRef] [PubMed]
  22. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
    [CrossRef] [PubMed]
  23. Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
    [CrossRef] [PubMed]
  24. G. Zhu, J. van Howe, M. E. Durst, W. Zipfel, C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    [CrossRef] [PubMed]
  25. D. Oron, E. Tal, Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [CrossRef] [PubMed]
  26. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
    [CrossRef] [PubMed]
  27. F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys. 13(8), 083014 (2011).
    [CrossRef]
  28. B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
    [CrossRef]
  29. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18(17), 18086–18094 (2010).
    [CrossRef] [PubMed]
  30. D. Kim, P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett. 35(10), 1602–1604 (2010).
    [CrossRef] [PubMed]
  31. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express 18(24), 24673–24678 (2010).
    [CrossRef] [PubMed]
  32. C. G. Durfee, M. Greco, E. Block, D. Vitek, J. A. Squier, “Intuitive analysis of space-time focusing with double-ABCD calculation,” Opt. Express 20(13), 14244–14259 (2012).
    [CrossRef] [PubMed]
  33. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).
  34. S. Akturk, X. Gu, E. Zeek, R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12(19), 4399–4410 (2004).
    [CrossRef] [PubMed]
  35. K. Itoh, W. Watanabe, S. Nolte, C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).
  36. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
    [CrossRef] [PubMed]
  37. B. K. Andrasfalvy, B. V. Zemelman, J. Tang, A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
    [CrossRef] [PubMed]
  38. S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
    [CrossRef]
  39. M. E. Durst, G. Zhu, C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
    [CrossRef] [PubMed]
  40. M. E. Durst, G. Zhu, C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
    [CrossRef] [PubMed]
  41. B. Chatel, J. Degert, B. Girard, “Role of quadratic and cubic spectral phases in ladder climbing with ultrashort pulses,” Phys. Rev. A 70(5), 053414 (2004).
    [CrossRef]

2014 (1)

F. Chen, J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8(2), 251–275 (2014).

2012 (5)

K. Sugioka, Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip 12(19), 3576–3589 (2012).
[CrossRef] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

P. S. Salter, M. J. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett. 101(14), 141109 (2012).
[CrossRef]

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1(4), e6 (2012).
[CrossRef]

C. G. Durfee, M. Greco, E. Block, D. Vitek, J. A. Squier, “Intuitive analysis of space-time focusing with double-ABCD calculation,” Opt. Express 20(13), 14244–14259 (2012).
[CrossRef] [PubMed]

2011 (2)

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys. 13(8), 083014 (2011).
[CrossRef]

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

2010 (9)

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
[CrossRef] [PubMed]

D. Kim, P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett. 35(10), 1602–1604 (2010).
[CrossRef] [PubMed]

D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18(17), 18086–18094 (2010).
[CrossRef] [PubMed]

D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express 18(24), 24673–24678 (2010).
[CrossRef] [PubMed]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[CrossRef] [PubMed]

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

2009 (1)

2008 (5)

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

W. Yang, P. G. Kazansky, Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[CrossRef]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[CrossRef]

M. E. Durst, G. Zhu, C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
[CrossRef] [PubMed]

2007 (1)

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

2006 (3)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

K. Itoh, W. Watanabe, S. Nolte, C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).

M. E. Durst, G. Zhu, C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (3)

2003 (2)

2002 (2)

S. K. Sundaram, E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef] [PubMed]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[CrossRef]

2001 (1)

1998 (1)

S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

1996 (1)

Adams, D. E.

Akturk, S.

Andrasfalvy, B. K.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

Anselmi, F.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Arai, A.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

Audouard, E.

Backus, S.

Baldacchini, T.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1(4), e6 (2012).
[CrossRef]

Bègue, A.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Bellouard, Y.

Beresna, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Block, E.

Booth, M. J.

P. S. Salter, M. J. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett. 101(14), 141109 (2012).
[CrossRef]

Bovatsek, J.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

Boyle, M.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[CrossRef]

Bricchi, E.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

Campbell, E. E. B.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[CrossRef]

Chatel, B.

B. Chatel, J. Degert, B. Girard, “Role of quadratic and cubic spectral phases in ladder climbing with ultrashort pulses,” Phys. Rev. A 70(5), 053414 (2004).
[CrossRef]

Chen, D.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

Chen, F.

F. Chen, J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8(2), 251–275 (2014).

Cheng, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

K. Sugioka, Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip 12(19), 3576–3589 (2012).
[CrossRef] [PubMed]

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys. 13(8), 083014 (2011).
[CrossRef]

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29(17), 2007–2009 (2004).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
[CrossRef] [PubMed]

Chin, S. L.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

Chu, W.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Crespi, A.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[CrossRef] [PubMed]

Dai, Y.

Davis, K. M.

de Sars, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Degert, J.

B. Chatel, J. Degert, B. Girard, “Role of quadratic and cubic spectral phases in ladder climbing with ultrashort pulses,” Phys. Rev. A 70(5), 053414 (2004).
[CrossRef]

Durfee, C. G.

Durst, M. E.

Emiliani, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Fujita, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Gao, H.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

Gao, Y.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1(4), e6 (2012).
[CrossRef]

Gattass, R. R.

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Girard, B.

B. Chatel, J. Degert, B. Girard, “Role of quadratic and cubic spectral phases in ladder climbing with ultrashort pulses,” Phys. Rev. A 70(5), 053414 (2004).
[CrossRef]

Glückstad, J.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Greco, M.

Gu, X.

He, F.

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys. 13(8), 083014 (2011).
[CrossRef]

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
[CrossRef] [PubMed]

He, X. N.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1(4), e6 (2012).
[CrossRef]

Hertel, I. V.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[CrossRef]

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

S. Kanehira, J. Si, J. Qiu, K. Fujita, K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Huot, N.

Isacoff, E. Y.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).

Jiang, L.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1(4), e6 (2012).
[CrossRef]

Johnson, A.

Juodkazis, S.

Kanehira, S.

S. Kanehira, J. Si, J. Qiu, K. Fujita, K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Kapteyn, H. C.

S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Kawachi, M.

Kazansky, P. G.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[CrossRef]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Kim, D.

Kleinfeld, D.

Korn, G.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[CrossRef]

Li, E.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

Li, G.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

Liao, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

Lin, J.

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys. 13(8), 083014 (2011).
[CrossRef]

Liu, W.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

Liu, Y.

Lu, Y. F.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1(4), e6 (2012).
[CrossRef]

Luo, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

Mahjouri-Samani, M.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1(4), e6 (2012).
[CrossRef]

Marcinkevicius, A.

Masuda, M.

Mataloni, P.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[CrossRef] [PubMed]

Matsuo, S.

Mauclair, C.

Mazur, E.

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

S. K. Sundaram, E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef] [PubMed]

Mermillod-Blondin, A.

Midorikawa, K.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys. 13(8), 083014 (2011).
[CrossRef]

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
[CrossRef] [PubMed]

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Y. Cheng, K. Sugioka, K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29(17), 2007–2009 (2004).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
[CrossRef] [PubMed]

Misawa, H.

Miura, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Miwa, M.

Murnane, M. M.

S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Ni, J.

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys. 13(8), 083014 (2011).
[CrossRef]

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
[CrossRef] [PubMed]

Nishii, J.

Nolte, S.

K. Itoh, W. Watanabe, S. Nolte, C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).

Oron, D.

Osellame, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[CrossRef] [PubMed]

Papagiakoumou, E.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Qian, B.

Qiao, L.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Qiu, J.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

S. Kanehira, J. Si, J. Qiu, K. Fujita, K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Ramponi, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[CrossRef] [PubMed]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Rosenfeld, A.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[CrossRef]

Sakakura, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[CrossRef]

Salter, P. S.

P. S. Salter, M. J. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett. 101(14), 141109 (2012).
[CrossRef]

Sansoni, L.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[CrossRef] [PubMed]

Schaffer, C.

K. Itoh, W. Watanabe, S. Nolte, C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).

Sciarrino, F.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[CrossRef] [PubMed]

Shen, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

Shihoyama, K.

Shimizu, M.

Shimotsuma, Y.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Si, J.

S. Kanehira, J. Si, J. Qiu, K. Fujita, K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Silberberg, Y.

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

So, P. T. C.

Song, J.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

Squier, J. A.

Stoian, R.

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[CrossRef]

Sugimoto, N.

Sugioka, K.

K. Sugioka, Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip 12(19), 3576–3589 (2012).
[CrossRef] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys. 13(8), 083014 (2011).
[CrossRef]

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29(17), 2007–2009 (2004).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
[CrossRef] [PubMed]

Sundaram, S. K.

S. K. Sundaram, E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef] [PubMed]

Svirko, Y. P.

W. Yang, P. G. Kazansky, Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[CrossRef]

Tal, E.

Tang, J.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Thoss, A.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[CrossRef]

Toyoda, K.

Trebino, R.

Tsai, P. S.

Vallone, G.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[CrossRef] [PubMed]

van Howe, J.

Vaziri, A.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

Vazquez de Aldana, J. R.

F. Chen, J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8(2), 251–275 (2014).

Vitek, D.

Vitek, D. N.

Wang, C.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Watanabe, M.

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).

Wu, J.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

Xiong, H.

Xiong, W.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1(4), e6 (2012).
[CrossRef]

Xu, C.

Xu, H.

Xu, Z.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys. 13(8), 083014 (2011).
[CrossRef]

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
[CrossRef] [PubMed]

Yang, W.

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[CrossRef]

W. Yang, P. G. Kazansky, Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

Yao, J.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

Zeek, E.

Zemelman, B. V.

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

Zeng, B.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

Zhang, H.

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

Zhou, Y. S.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1(4), e6 (2012).
[CrossRef]

Zhu, B.

Zhu, G.

Zipfel, W.

Adv. Mater. (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[CrossRef]

P. S. Salter, M. J. Booth, “Dynamic control of directional asymmetry observed in ultrafast laser direct writing,” Appl. Phys. Lett. 101(14), 141109 (2012).
[CrossRef]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80(3), 353–355 (2002).
[CrossRef]

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010).
[CrossRef]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[CrossRef]

Lab Chip (2)

K. Sugioka, Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip 12(19), 3576–3589 (2012).
[CrossRef] [PubMed]

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12(4), 746–749 (2012).
[CrossRef] [PubMed]

Laser Photon. Rev. (1)

F. Chen, J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8(2), 251–275 (2014).

Light Sci. Appl. (1)

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1(4), e6 (2012).
[CrossRef]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).

Nano Lett. (1)

S. Kanehira, J. Si, J. Qiu, K. Fujita, K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. K. Sundaram, E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef] [PubMed]

Nat. Methods (1)

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

W. Yang, P. G. Kazansky, Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[CrossRef]

R. R. Gattass, E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

New J. Phys. (1)

F. He, Y. Cheng, J. Lin, J. Ni, Z. Xu, K. Sugioka, K. Midorikawa, “Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining,” New J. Phys. 13(8), 083014 (2011).
[CrossRef]

Opt. Commun. (1)

M. E. Durst, G. Zhu, C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
[CrossRef] [PubMed]

Opt. Express (8)

D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18(17), 18086–18094 (2010).
[CrossRef] [PubMed]

D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express 18(24), 24673–24678 (2010).
[CrossRef] [PubMed]

C. G. Durfee, M. Greco, E. Block, D. Vitek, J. A. Squier, “Intuitive analysis of space-time focusing with double-ABCD calculation,” Opt. Express 20(13), 14244–14259 (2012).
[CrossRef] [PubMed]

S. Akturk, X. Gu, E. Zeek, R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12(19), 4399–4410 (2004).
[CrossRef] [PubMed]

D. Oron, E. Tal, Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
[CrossRef] [PubMed]

G. Zhu, J. van Howe, M. E. Durst, W. Zipfel, C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
[CrossRef] [PubMed]

M. E. Durst, G. Zhu, C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

Opt. Lett. (7)

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009).
[CrossRef] [PubMed]

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
[CrossRef] [PubMed]

D. Kim, P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett. 35(10), 1602–1604 (2010).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29(17), 2007–2009 (2004).
[CrossRef] [PubMed]

Phys. Rev. A (2)

B. Zeng, W. Chu, H. Gao, W. Liu, G. Li, H. Zhang, J. Yao, J. Ni, S. L. Chin, Y. Cheng, Z. Xu, “Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses,” Phys. Rev. A 84(6), 063819 (2011).
[CrossRef]

B. Chatel, J. Degert, B. Girard, “Role of quadratic and cubic spectral phases in ladder climbing with ultrashort pulses,” Phys. Rev. A 70(5), 053414 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. K. Andrasfalvy, B. V. Zemelman, J. Tang, A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experiment setup for imaging the TPFE signal excited by the spatiotemporally focused pulses. FM1~2: flipping mirrors, Ap.: aperture, VF1~2: variable neutral density filter, L1~3: lenses, G1~2: gratings. (Inset shows the view angle of the camera).

Fig. 2
Fig. 2

TPFE images (a)-(d) with temporal focusing and (e)-(f) without temporal focusing (lens f = 500mm). (a) and (c) are TPFE images captured in the XZ and YZ planes, respectively, and (b), (d), (f) are corresponding numerical simulation TPFE signals. The color bar is shown at the bottom. Notice that the horizontal and vertical scale bars in (e) and (f) are different.

Fig. 3
Fig. 3

TPFE images with temporal focusing using lenses with focal lengths of (a) 1000 mm, (c) 500 mm and (e) 250 mm, respectively. (b), (d), (f) are corresponding numerical simulation TPFE signals. The color bar is shown at the bottom. Notice that the scale bar in (e) and (f) is smaller than that in (a) - (d).

Fig. 4
Fig. 4

Illustration of the relative orientations of the spatial chirp (top), pulse front tilt (lower left), and intensity plane tilt with the IPT angle indicated (lower right). The PFT is represented as a snapshot so that the leading edge of the pulse is at larger z = ct.

Fig. 5
Fig. 5

TPFE images using temporal focusing with input SOP values of (a) ϕ2in = 0, (c) ϕ2in = 500 fs2, (e) ϕ2in = 1000 fs2, (g) ϕ2in = 2000 fs2, (i) ϕ2in = 4000 fs2, and (k) ϕ2in = 6000 fs2, respectively. (b), (d), (f), (g), (j) and (l) are corresponding numerical simulation TPFE signals. The color bar is shown at the bottom.

Fig. 6
Fig. 6

Comparison of the temporal profile of the pulse at the temporal focus with (a) τ0 = 40 fs, ϕ2in = 2000 fs2, ϕ3in = −4000 fs3, (b) τ0 = 40 fs, ϕ2in = 4000 fs2, ϕ3in = −8000 fs3, (c) τ0 = 40 fs, ϕ2in = 6000 fs2, ϕ3in = −12000 fs3 and (d) τ0 = 10 fs, ϕ2in = 2000 fs2, ϕ3in = −4000 fs3, respectively. The red curves are pulse profiles without input SOP and TOP, and the green curves are pulse profiles with only input SOP, while the blue curves are those with both input SOP and TOP.

Fig. 7
Fig. 7

Numerical simulation of the TPFE signals using temporal focusing with (a) ϕ2in = 0 fs2, ϕ3in = 0 fs3, (b) ϕ2in = 2000 fs2, ϕ3in = 0 fs3, (c)ϕ2in = 2000 fs2, ϕ3in = −4000 fs3, (d) ϕ2in = 4000 fs2, ϕ3in = 0 fs3, (e) ϕ2in = 4000 fs2, ϕ3in = −8000 fs3, (f) ϕ2in = 6000 fs2, ϕ3in = 0 fs3, and (g) ϕ2in = 6000 fs2, ϕ3in = −12000 fs3 respectively. The color bar is shown at the bottom.

Tables (3)

Tables Icon

Table 1 List of variables used for simulation

Tables Icon

Table 2 List of variables used for the analytical calculation

Tables Icon

Table 3 Estimation of zd with respect to ϕ2in

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( x,y,ω )= A 0 exp[ ( ω ω 0 ) 2 Δ ω 2 +i 1 2 ϕ 2in ( ω ω 0 ) 2 ]exp{ [ xα(ω ω 0 ) ] 2 + y 2 w in 2 },
E 2 ( x,y,z,ω )= exp(ikL) iλB E 1 (ξ,η,ω)exp{ ik 2B [ A( ξ 2 + η 2 )2( xξ+yη )+D( x 2 + y 2 ) ] }dξdη ,
[ A B C D ]=[ 1 nz 0 1 ][ 1 l 0 1 ][ 1 0 1/f 1 ],
I 2P ( x,y,z ) I TF 2 ( x,y,z,t )dt= | 1 { E 2 ( x,y,z,ω ) } | 4 dt,
ϕ( x,y,z,ω )=n(ω) k 0 xsin θ x +n(ω) k 0 z( 1 1 2 sin 2 θ x )η( z )+n(ω) k 0 (xzsin θ x ) 2 + y 2 2R(z) ,
ϕ 2 (x,z)=( x w 0 τ 0 β ω 0 z z R τ 0 2 β 2 4 )( n 1+ z 2 / z R 2 ),
z( x )= 2 β x w 0 Δω ω 0 z R = 2nf α ω 0 x,
tan θ t = α ω 0 2nf .
τ( x,z )=  τ 0 1+ ( k 2x x+ k 2z z τ 0 2 ) 2 τ 0 1+ 1 τ 0 4 α 2 c 2 f 2 ( xztan θ t ) 2 ,
z DOF 2 3 1+ β 2 z R .
z(x) z DOF 1 3 β x w 0 Δω ω 0 = 1 2 3 c αΔ ω 2 f x,
ϕ 2 = λ 3 d σ 2 π c 2 [ 1 (λσsini) 2 ] 3/2 ,
ϕ 2 ( x,z )=( x w 0 τ 0 β ω 0 z z R τ 0 2 β 2 4 )( n 1+ z 2 / z R 2 )+ ϕ 2in ,
z d ϕ 2in w in 2 n α 2 z R = ϕ 2in Δ ω 2 n β 2 z R ,
z'( x ) | x=0   1 tan θ t 1 12 z d 2 / z R 2 .
tan θ T =( 12 z d 2 / z R 2 )tan θ t .
I( z )= I 0 1 (1+ z 2 / z R 2 )(1+ β BA 4 z 2 / z R 2 ) ,
(1+ z H 2 / z R 2 )(1+ β BA 4 z H 2 / z R 2 )=4.
z DOF 2 3 β BA 2 z R = 2 3 1+ β 2 z R .
2α ω 0 w in w 0 x- α 2 z R w in 2 z+ ϕ 2in n z R 2 z 2 + ϕ 2in n =0.
z' | x = 2 w in z R α ω 0 w 0 1 12 ϕ 2in z n z R w in 2 α 2 = 1 tan θ t 1 12 z d z/ z R 2 .
z'( x ) | x=0   1 tan θ t 1 12 z d 2 / z R 2 .
ϕ 3in = 3λ 2πc ϕ 2in 1+λσsini sin 2 i 1 (λσsini) 2 .
E 1 ( x,y,ω )= A 0 exp[ ( ω ω 0 ) 2 Δ ω 2 +i 1 2 ϕ 2in ( ω ω 0 ) 2 +i 1 6 ϕ 3in ( ω ω 0 ) 3 ]exp{ [ xα(ω ω 0 ) ] 2 + y 2 w in 2 }.

Metrics