Abstract

The design of a Tm-doped photonic crystal fiber with ∼80 μm core diameter and robust single-mode guiding is proposed. State-of-art modal discrimination is obtained through the suppression of the inner cladding C6ν symmetry, which fosters the delocalization of the LP11-like mode. The effects of thermally-induced refractive index change are investigated by means of a computationally-efficient thermal model, and the possibility to obtain wide-band single-mode propagation and effective area exceeding 2500 μm2 under a heat load of over 300 W/m is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nature Photonics 6, 423–431 (2012).
    [CrossRef]
  2. A. Tünnermann, T. Schreiber, J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Applied Optics 49, F71–F78 (2010).
    [CrossRef] [PubMed]
  3. D. J. Richardson, J. Nilsson, W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  4. N. Modsching, P. Kadwani, R. A. Sims, L. Leick, J. Broeng, L. Shah, M. Richardson, “Lasing in thulium-doped polarizing photonic crystal fiber,” Opt. Lett. 36, 3873–3875 (2011).
    [CrossRef] [PubMed]
  5. C. Gaida, P. Kadwani, L. Leick, J. Broeng, L. Shah, M. Richardson, “Cw-lasing and amplification in Tm3+-doped photonic crystal fiber rod,” Opt. Lett. 37, 4513–4515 (2012).
    [CrossRef] [PubMed]
  6. D. C. Brown, H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” Quantum Electronics, IEEE Journal of 37, 207–217 (2001).
    [CrossRef]
  7. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2μm Tm3+-doped silica fibre lasers,” Optics Communications 230, 197–203 (2004).
    [CrossRef]
  8. F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, A. Tünnermann, “Non-hexagonal large-pitch fibers for enhanced mode discrimination,” Optics Express 19, 12081–12086 (2011).
    [CrossRef] [PubMed]
  9. R. Dauliat, D. Gaponov, A. Benoit, F. Salin, K. Schuster, R. Jamier, P. Roy, “Inner cladding microstructuration based on symmetry reduction for improvement of singlemode robustness in VLMA fiber,” Opt. Express 21, 18927–18936 (2013).
    [CrossRef] [PubMed]
  10. S. Selleri, J. Petrácek, “Modal analysis of rib waveguide through finite element and mode matching methods,” Optical and Quantum Electronics 33, 373–386 (2001).
    [CrossRef]
  11. F. Poli, A. Cucinotta, S. Selleri, Photonic Crystal Fibers. Properties and Applications (Springer Series in Material Science, Dordrecht, 2007).
  12. E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” Lightwave Technology, IEEE Journal of 30, 3494–3499 (2012).
    [CrossRef]
  13. F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, A. Tünnermann, “High-power very large mode-area thulium-doped fiber laser,” Opt. Lett. 37, 4546–4548 (2012).
    [CrossRef] [PubMed]
  14. E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Optics Express 18, 27197–27204 (2010).
    [CrossRef]
  15. M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Optics Express 20, 7263–7273 (2012).
    [CrossRef] [PubMed]
  16. M. M. Johansen, K. R. Hansen, M. Laurila, T. T. Alkeskjold, J. Lægsgaard, “Estimating modal instability threshold for photonic crystal rod fiber amplifiers,” Opt. Express 21, 15409–15417 (2013).
    [CrossRef] [PubMed]
  17. E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
    [CrossRef]

2013 (3)

2012 (5)

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” Lightwave Technology, IEEE Journal of 30, 3494–3499 (2012).
[CrossRef]

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, A. Tünnermann, “High-power very large mode-area thulium-doped fiber laser,” Opt. Lett. 37, 4546–4548 (2012).
[CrossRef] [PubMed]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Optics Express 20, 7263–7273 (2012).
[CrossRef] [PubMed]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nature Photonics 6, 423–431 (2012).
[CrossRef]

C. Gaida, P. Kadwani, L. Leick, J. Broeng, L. Shah, M. Richardson, “Cw-lasing and amplification in Tm3+-doped photonic crystal fiber rod,” Opt. Lett. 37, 4513–4515 (2012).
[CrossRef] [PubMed]

2011 (2)

N. Modsching, P. Kadwani, R. A. Sims, L. Leick, J. Broeng, L. Shah, M. Richardson, “Lasing in thulium-doped polarizing photonic crystal fiber,” Opt. Lett. 36, 3873–3875 (2011).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, A. Tünnermann, “Non-hexagonal large-pitch fibers for enhanced mode discrimination,” Optics Express 19, 12081–12086 (2011).
[CrossRef] [PubMed]

2010 (3)

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Optics Express 18, 27197–27204 (2010).
[CrossRef]

A. Tünnermann, T. Schreiber, J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Applied Optics 49, F71–F78 (2010).
[CrossRef] [PubMed]

D. J. Richardson, J. Nilsson, W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[CrossRef]

2004 (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2μm Tm3+-doped silica fibre lasers,” Optics Communications 230, 197–203 (2004).
[CrossRef]

2001 (2)

S. Selleri, J. Petrácek, “Modal analysis of rib waveguide through finite element and mode matching methods,” Optical and Quantum Electronics 33, 373–386 (2001).
[CrossRef]

D. C. Brown, H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” Quantum Electronics, IEEE Journal of 37, 207–217 (2001).
[CrossRef]

Alkeskjold, T. T.

M. M. Johansen, K. R. Hansen, M. Laurila, T. T. Alkeskjold, J. Lægsgaard, “Estimating modal instability threshold for photonic crystal rod fiber amplifiers,” Opt. Express 21, 15409–15417 (2013).
[CrossRef] [PubMed]

E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
[CrossRef]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Optics Express 20, 7263–7273 (2012).
[CrossRef] [PubMed]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” Lightwave Technology, IEEE Journal of 30, 3494–3499 (2012).
[CrossRef]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Optics Express 18, 27197–27204 (2010).
[CrossRef]

Benoit, A.

Broeng, J.

E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
[CrossRef]

C. Gaida, P. Kadwani, L. Leick, J. Broeng, L. Shah, M. Richardson, “Cw-lasing and amplification in Tm3+-doped photonic crystal fiber rod,” Opt. Lett. 37, 4513–4515 (2012).
[CrossRef] [PubMed]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” Lightwave Technology, IEEE Journal of 30, 3494–3499 (2012).
[CrossRef]

N. Modsching, P. Kadwani, R. A. Sims, L. Leick, J. Broeng, L. Shah, M. Richardson, “Lasing in thulium-doped polarizing photonic crystal fiber,” Opt. Lett. 36, 3873–3875 (2011).
[CrossRef] [PubMed]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Optics Express 18, 27197–27204 (2010).
[CrossRef]

Brown, D. C.

D. C. Brown, H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” Quantum Electronics, IEEE Journal of 37, 207–217 (2001).
[CrossRef]

Candiani, A.

E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
[CrossRef]

Clarkson, W. A.

Coscelli, E.

E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
[CrossRef]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” Lightwave Technology, IEEE Journal of 30, 3494–3499 (2012).
[CrossRef]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Optics Express 18, 27197–27204 (2010).
[CrossRef]

Cucinotta, A.

E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
[CrossRef]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” Lightwave Technology, IEEE Journal of 30, 3494–3499 (2012).
[CrossRef]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Optics Express 18, 27197–27204 (2010).
[CrossRef]

F. Poli, A. Cucinotta, S. Selleri, Photonic Crystal Fibers. Properties and Applications (Springer Series in Material Science, Dordrecht, 2007).

Dauliat, R.

Gaida, C.

Gaponov, D.

Hansen, K. R.

Hoffman, H. J.

D. C. Brown, H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” Quantum Electronics, IEEE Journal of 37, 207–217 (2001).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nature Photonics 6, 423–431 (2012).
[CrossRef]

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2μm Tm3+-doped silica fibre lasers,” Optics Communications 230, 197–203 (2004).
[CrossRef]

Jamier, R.

Jansen, F.

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, A. Tünnermann, “High-power very large mode-area thulium-doped fiber laser,” Opt. Lett. 37, 4546–4548 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, A. Tünnermann, “Non-hexagonal large-pitch fibers for enhanced mode discrimination,” Optics Express 19, 12081–12086 (2011).
[CrossRef] [PubMed]

Jauregui, C.

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, A. Tünnermann, “High-power very large mode-area thulium-doped fiber laser,” Opt. Lett. 37, 4546–4548 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, A. Tünnermann, “Non-hexagonal large-pitch fibers for enhanced mode discrimination,” Optics Express 19, 12081–12086 (2011).
[CrossRef] [PubMed]

Johansen, M. M.

Jørgensen, M. M.

E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
[CrossRef]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Optics Express 20, 7263–7273 (2012).
[CrossRef] [PubMed]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” Lightwave Technology, IEEE Journal of 30, 3494–3499 (2012).
[CrossRef]

Kadwani, P.

Lægsgaard, J.

M. M. Johansen, K. R. Hansen, M. Laurila, T. T. Alkeskjold, J. Lægsgaard, “Estimating modal instability threshold for photonic crystal rod fiber amplifiers,” Opt. Express 21, 15409–15417 (2013).
[CrossRef] [PubMed]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Optics Express 20, 7263–7273 (2012).
[CrossRef] [PubMed]

Laurila, M.

M. M. Johansen, K. R. Hansen, M. Laurila, T. T. Alkeskjold, J. Lægsgaard, “Estimating modal instability threshold for photonic crystal rod fiber amplifiers,” Opt. Express 21, 15409–15417 (2013).
[CrossRef] [PubMed]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Optics Express 20, 7263–7273 (2012).
[CrossRef] [PubMed]

Leick, L.

E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
[CrossRef]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” Lightwave Technology, IEEE Journal of 30, 3494–3499 (2012).
[CrossRef]

C. Gaida, P. Kadwani, L. Leick, J. Broeng, L. Shah, M. Richardson, “Cw-lasing and amplification in Tm3+-doped photonic crystal fiber rod,” Opt. Lett. 37, 4513–4515 (2012).
[CrossRef] [PubMed]

N. Modsching, P. Kadwani, R. A. Sims, L. Leick, J. Broeng, L. Shah, M. Richardson, “Lasing in thulium-doped polarizing photonic crystal fiber,” Opt. Lett. 36, 3873–3875 (2011).
[CrossRef] [PubMed]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Optics Express 18, 27197–27204 (2010).
[CrossRef]

Limpert, J.

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, A. Tünnermann, “High-power very large mode-area thulium-doped fiber laser,” Opt. Lett. 37, 4546–4548 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, A. Tünnermann, “Non-hexagonal large-pitch fibers for enhanced mode discrimination,” Optics Express 19, 12081–12086 (2011).
[CrossRef] [PubMed]

A. Tünnermann, T. Schreiber, J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Applied Optics 49, F71–F78 (2010).
[CrossRef] [PubMed]

Modsching, N.

Nilsson, J.

Passaro, D.

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Optics Express 18, 27197–27204 (2010).
[CrossRef]

Petersen, S. R.

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Optics Express 20, 7263–7273 (2012).
[CrossRef] [PubMed]

Petrácek, J.

S. Selleri, J. Petrácek, “Modal analysis of rib waveguide through finite element and mode matching methods,” Optical and Quantum Electronics 33, 373–386 (2001).
[CrossRef]

Poli, F.

E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
[CrossRef]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” Lightwave Technology, IEEE Journal of 30, 3494–3499 (2012).
[CrossRef]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Optics Express 18, 27197–27204 (2010).
[CrossRef]

F. Poli, A. Cucinotta, S. Selleri, Photonic Crystal Fibers. Properties and Applications (Springer Series in Material Science, Dordrecht, 2007).

Richardson, D. J.

Richardson, M.

Roy, P.

Salin, F.

Schreiber, T.

A. Tünnermann, T. Schreiber, J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Applied Optics 49, F71–F78 (2010).
[CrossRef] [PubMed]

Schuster, K.

Selleri, S.

E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
[CrossRef]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” Lightwave Technology, IEEE Journal of 30, 3494–3499 (2012).
[CrossRef]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Optics Express 18, 27197–27204 (2010).
[CrossRef]

S. Selleri, J. Petrácek, “Modal analysis of rib waveguide through finite element and mode matching methods,” Optical and Quantum Electronics 33, 373–386 (2001).
[CrossRef]

F. Poli, A. Cucinotta, S. Selleri, Photonic Crystal Fibers. Properties and Applications (Springer Series in Material Science, Dordrecht, 2007).

Shah, L.

Sims, R. A.

Sozzi, M.

E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
[CrossRef]

Stutzki, F.

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, A. Tünnermann, “High-power very large mode-area thulium-doped fiber laser,” Opt. Lett. 37, 4546–4548 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, A. Tünnermann, “Non-hexagonal large-pitch fibers for enhanced mode discrimination,” Optics Express 19, 12081–12086 (2011).
[CrossRef] [PubMed]

Tünnermann, A.

F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, A. Tünnermann, “High-power very large mode-area thulium-doped fiber laser,” Opt. Lett. 37, 4546–4548 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, A. Tünnermann, “Non-hexagonal large-pitch fibers for enhanced mode discrimination,” Optics Express 19, 12081–12086 (2011).
[CrossRef] [PubMed]

A. Tünnermann, T. Schreiber, J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Applied Optics 49, F71–F78 (2010).
[CrossRef] [PubMed]

Applied Optics (1)

A. Tünnermann, T. Schreiber, J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Applied Optics 49, F71–F78 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Lightwave Technology, IEEE Journal of (1)

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” Lightwave Technology, IEEE Journal of 30, 3494–3499 (2012).
[CrossRef]

Nature Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nature Photonics 6, 423–431 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Optical and Quantum Electronics (1)

S. Selleri, J. Petrácek, “Modal analysis of rib waveguide through finite element and mode matching methods,” Optical and Quantum Electronics 33, 373–386 (2001).
[CrossRef]

Optics Communications (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2μm Tm3+-doped silica fibre lasers,” Optics Communications 230, 197–203 (2004).
[CrossRef]

Optics Express (3)

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, A. Tünnermann, “Non-hexagonal large-pitch fibers for enhanced mode discrimination,” Optics Express 19, 12081–12086 (2011).
[CrossRef] [PubMed]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Optics Express 18, 27197–27204 (2010).
[CrossRef]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Optics Express 20, 7263–7273 (2012).
[CrossRef] [PubMed]

Proc. of SPIE (1)

E. Coscelli, F. Poli, M. M. Jørgensen, T. T. Alkeskjold, L. Leick, J. Broeng, M. Sozzi, A. Candiani, A. Cucinotta, S. Selleri, “Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers,” Proc. of SPIE 8601, 86012 (2013).
[CrossRef]

Quantum Electronics, IEEE Journal of (1)

D. C. Brown, H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” Quantum Electronics, IEEE Journal of 37, 207–217 (2001).
[CrossRef]

Other (1)

F. Poli, A. Cucinotta, S. Selleri, Photonic Crystal Fibers. Properties and Applications (Springer Series in Material Science, Dordrecht, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the cross-section of the symmetry-free PCF. Cross-sections of the simulated (b) symmetry-free and (c) large-pitch fibers.

Fig. 2
Fig. 2

Overlap integral difference ΔΓ between the FM and the most detrimental HOM of the SF-PCF, as a function of the normalized air-hole diameter and heat load, obtained with (a) no core down-doping, (b) with core down-doping Δn = −10−4, and (c) with Δn = −2·10−4. Same results obtained for large-pitch fibers are reported in (d) for no core down-doping, (e) for Δn = −10−4 and (f) for Δn = −2 · 10−4. White lines are drawn at ΔΓ = 0.3.

Fig. 3
Fig. 3

(a) Overlap integral of the most relevant guided modes of the SF-PCF as a function of the heat load, calculated at λ = 2 μm. (b) ΔΓ between the LP01-like and the LP11-like modes of the SF-PCF (solid lines) and of the LPF (dashed lines). Magnetic field modulus distribution of the (c) LP01-like, (d) LP11-like, (e) LP02-like and (f) LP03-like modes of the SF-PCF.

Fig. 4
Fig. 4

(a) Effective area of the SF-PCF with dSFF = 0.24 and different values of core down-doping, calculated at λ = 2 μm as a function of the heat load. Dashed lines are used where fibers operate in multi-mode regime. (b) Effective area of the SF-PCF with dSFF = 0.24 and Δn = −2 · 10−4 for a heat load of 340 W/m (red line) and of the SF-PCF with dSFF = 0.24 and Δn = −10−4 for a heat load of 170 W/m (blue line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ = S i ( x , y ) d x d y ,
q = 1 10 α d L 10 d L ( 1 λ p λ s ) P ,

Metrics