Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Spot moiré fringes: determination of domain boundaries and structural parameters in ordered nanoporous structures,” Chem. Eur. J. 20, 2179–2183 (2014).

[CrossRef]

K. Patorski, M. Wielgus, M. Ekielski, and P. Kaźmierczak, “AFM nanomoiré technique with phase multiplication,” Meas. Sci. Technol. 24,035402 (2013).

[CrossRef]

Q. Wang, S. Kishimoto, Y. Tanaka, and Y. Kagawa, “Micro/submicro grating fabrication on metals for deformation measurement based on ultraviolet nanoimprint lithography,” Optics and Lasers in Engineering 51, 944–948 (2013).

[CrossRef]

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamic thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[CrossRef]

M. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express 20, 2942–2955 (2012).

[CrossRef]
[PubMed]

S. Ri and T. Muramatsu, “Theoretical error analysis of the sampling moiré method and phase compensation methodology for single-shot phase analysis,” Appl. Opt. 51, 3214–3223 (2012).

[CrossRef]
[PubMed]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[CrossRef]

M. Fujigaki, K. Shimo, A. Masaya, and Y. Morimoto, “Dynamic shape and strain measurements of rotating tire using a sampling moiré method,” Opt. Eng. 50,101506 (2011).

[CrossRef]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” Exp. Mech. 50, 501–508 (2010).

[CrossRef]

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101,103511 (2007).

[CrossRef]

J. J. Lee and M. Shinozuka, “A vision-based system for remote sensing of bridge displacement,” NDT&E Int 39, 425–432 (2006).

[CrossRef]

S. Avril, A. Vautrin, and Y. Surrel, “Grid method: application to the characterization of cracks,” Exp. Mech. 44, 37–43 (2004).

[CrossRef]

M. J. Hÿtch, J-L. Putaux, and J-M. Pénisson, “Measurement of the displacement field of dislocations to 0.03Å by electron microscopy,” Nature 423, 270–273 (2003).

[CrossRef]

Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, “High precision two-dimensional spatial fringe analysis method,” J. Mod. Opt. 44, 739–751 (1997).

[CrossRef]

B. Han and Y. Guo, “Thermal deformation analysis of various electronic packaging products by moiré and microscopic moiré interferometry,” J. Electron. Packaging, Trans. ASME 117, 185–191 (1995).

[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32, 522–526 (1993).

[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci. 40, 637–641 (1991).

[CrossRef]

J. M. Burch and C. Forno, “A high sensitivity moiré grid technique for studying deformation in large objects,” Opt. Eng. 14, 178–185 (1975).

[CrossRef]

Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, “High precision two-dimensional spatial fringe analysis method,” J. Mod. Opt. 44, 739–751 (1997).

[CrossRef]

S. Avril, A. Vautrin, and Y. Surrel, “Grid method: application to the characterization of cracks,” Exp. Mech. 44, 37–43 (2004).

[CrossRef]

J. M. Burch and C. Forno, “A high sensitivity moiré grid technique for studying deformation in large objects,” Opt. Eng. 14, 178–185 (1975).

[CrossRef]

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101,103511 (2007).

[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32, 522–526 (1993).

[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci. 40, 637–641 (1991).

[CrossRef]

K. Patorski, M. Wielgus, M. Ekielski, and P. Kaźmierczak, “AFM nanomoiré technique with phase multiplication,” Meas. Sci. Technol. 24,035402 (2013).

[CrossRef]

J. M. Burch and C. Forno, “A high sensitivity moiré grid technique for studying deformation in large objects,” Opt. Eng. 14, 178–185 (1975).

[CrossRef]

M. Fujigaki, K. Shimo, A. Masaya, and Y. Morimoto, “Dynamic shape and strain measurements of rotating tire using a sampling moiré method,” Opt. Eng. 50,101506 (2011).

[CrossRef]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” Exp. Mech. 50, 501–508 (2010).

[CrossRef]

B. Han and Y. Guo, “Thermal deformation analysis of various electronic packaging products by moiré and microscopic moiré interferometry,” J. Electron. Packaging, Trans. ASME 117, 185–191 (1995).

[CrossRef]

B. Han and Y. Guo, “Thermal deformation analysis of various electronic packaging products by moiré and microscopic moiré interferometry,” J. Electron. Packaging, Trans. ASME 117, 185–191 (1995).

[CrossRef]

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994), Chap.4.

[CrossRef]

M. J. Hÿtch, J-L. Putaux, and J-M. Pénisson, “Measurement of the displacement field of dislocations to 0.03Å by electron microscopy,” Nature 423, 270–273 (2003).

[CrossRef]

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994), Chap.4.

[CrossRef]

Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Spot moiré fringes: determination of domain boundaries and structural parameters in ordered nanoporous structures,” Chem. Eur. J. 20, 2179–2183 (2014).

[CrossRef]

Q. Wang, S. Kishimoto, Y. Tanaka, and Y. Kagawa, “Micro/submicro grating fabrication on metals for deformation measurement based on ultraviolet nanoimprint lithography,” Optics and Lasers in Engineering 51, 944–948 (2013).

[CrossRef]

S. Kishimoto, Y. Tanaka, T. Tomimatsu, Y. Kagawa, and K. Nagai, “Fabrication of micromodel grid for various moiré methods by femtosecond laser exposure,” Opt. Lett. 34, 112–114 (2009).

[CrossRef]
[PubMed]

K. Patorski, M. Wielgus, M. Ekielski, and P. Kaźmierczak, “AFM nanomoiré technique with phase multiplication,” Meas. Sci. Technol. 24,035402 (2013).

[CrossRef]

Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Spot moiré fringes: determination of domain boundaries and structural parameters in ordered nanoporous structures,” Chem. Eur. J. 20, 2179–2183 (2014).

[CrossRef]

Q. Wang, S. Kishimoto, Y. Tanaka, and Y. Kagawa, “Micro/submicro grating fabrication on metals for deformation measurement based on ultraviolet nanoimprint lithography,” Optics and Lasers in Engineering 51, 944–948 (2013).

[CrossRef]

S. Kishimoto, Y. Tanaka, T. Tomimatsu, Y. Kagawa, and K. Nagai, “Fabrication of micromodel grid for various moiré methods by femtosecond laser exposure,” Opt. Lett. 34, 112–114 (2009).

[CrossRef]
[PubMed]

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101,103511 (2007).

[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32, 522–526 (1993).

[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci. 40, 637–641 (1991).

[CrossRef]

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamic thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[CrossRef]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[CrossRef]

J. J. Lee and M. Shinozuka, “A vision-based system for remote sensing of bridge displacement,” NDT&E Int 39, 425–432 (2006).

[CrossRef]

M. Fujigaki, K. Shimo, A. Masaya, and Y. Morimoto, “Dynamic shape and strain measurements of rotating tire using a sampling moiré method,” Opt. Eng. 50,101506 (2011).

[CrossRef]

M. Fujigaki, K. Shimo, A. Masaya, and Y. Morimoto, “Dynamic shape and strain measurements of rotating tire using a sampling moiré method,” Opt. Eng. 50,101506 (2011).

[CrossRef]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” Exp. Mech. 50, 501–508 (2010).

[CrossRef]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[CrossRef]

S. Ri and T. Muramatsu, “Theoretical error analysis of the sampling moiré method and phase compensation methodology for single-shot phase analysis,” Appl. Opt. 51, 3214–3223 (2012).

[CrossRef]
[PubMed]

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamic thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[CrossRef]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[CrossRef]

K. Patorski, M. Wielgus, M. Ekielski, and P. Kaźmierczak, “AFM nanomoiré technique with phase multiplication,” Meas. Sci. Technol. 24,035402 (2013).

[CrossRef]

M. J. Hÿtch, J-L. Putaux, and J-M. Pénisson, “Measurement of the displacement field of dislocations to 0.03Å by electron microscopy,” Nature 423, 270–273 (2003).

[CrossRef]

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994), Chap.4.

[CrossRef]

M. J. Hÿtch, J-L. Putaux, and J-M. Pénisson, “Measurement of the displacement field of dislocations to 0.03Å by electron microscopy,” Nature 423, 270–273 (2003).

[CrossRef]

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamic thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[CrossRef]

S. Ri and T. Muramatsu, “Theoretical error analysis of the sampling moiré method and phase compensation methodology for single-shot phase analysis,” Appl. Opt. 51, 3214–3223 (2012).

[CrossRef]
[PubMed]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[CrossRef]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” Exp. Mech. 50, 501–508 (2010).

[CrossRef]

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamic thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[CrossRef]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[CrossRef]

M. Fujigaki, K. Shimo, A. Masaya, and Y. Morimoto, “Dynamic shape and strain measurements of rotating tire using a sampling moiré method,” Opt. Eng. 50,101506 (2011).

[CrossRef]

J. J. Lee and M. Shinozuka, “A vision-based system for remote sensing of bridge displacement,” NDT&E Int 39, 425–432 (2006).

[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32, 522–526 (1993).

[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci. 40, 637–641 (1991).

[CrossRef]

Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, “High precision two-dimensional spatial fringe analysis method,” J. Mod. Opt. 44, 739–751 (1997).

[CrossRef]

S. Avril, A. Vautrin, and Y. Surrel, “Grid method: application to the characterization of cracks,” Exp. Mech. 44, 37–43 (2004).

[CrossRef]

Q. Wang, S. Kishimoto, Y. Tanaka, and Y. Kagawa, “Micro/submicro grating fabrication on metals for deformation measurement based on ultraviolet nanoimprint lithography,” Optics and Lasers in Engineering 51, 944–948 (2013).

[CrossRef]

S. Kishimoto, Y. Tanaka, T. Tomimatsu, Y. Kagawa, and K. Nagai, “Fabrication of micromodel grid for various moiré methods by femtosecond laser exposure,” Opt. Lett. 34, 112–114 (2009).

[CrossRef]
[PubMed]

S. Avril, A. Vautrin, and Y. Surrel, “Grid method: application to the characterization of cracks,” Exp. Mech. 44, 37–43 (2004).

[CrossRef]

Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Spot moiré fringes: determination of domain boundaries and structural parameters in ordered nanoporous structures,” Chem. Eur. J. 20, 2179–2183 (2014).

[CrossRef]

Q. Wang, S. Kishimoto, Y. Tanaka, and Y. Kagawa, “Micro/submicro grating fabrication on metals for deformation measurement based on ultraviolet nanoimprint lithography,” Optics and Lasers in Engineering 51, 944–948 (2013).

[CrossRef]

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101,103511 (2007).

[CrossRef]

K. Patorski, M. Wielgus, M. Ekielski, and P. Kaźmierczak, “AFM nanomoiré technique with phase multiplication,” Meas. Sci. Technol. 24,035402 (2013).

[CrossRef]

M. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express 20, 2942–2955 (2012).

[CrossRef]
[PubMed]

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101,103511 (2007).

[CrossRef]

Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, “High precision two-dimensional spatial fringe analysis method,” J. Mod. Opt. 44, 739–751 (1997).

[CrossRef]

Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Spot moiré fringes: determination of domain boundaries and structural parameters in ordered nanoporous structures,” Chem. Eur. J. 20, 2179–2183 (2014).

[CrossRef]

Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, “High precision two-dimensional spatial fringe analysis method,” J. Mod. Opt. 44, 739–751 (1997).

[CrossRef]

Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Spot moiré fringes: determination of domain boundaries and structural parameters in ordered nanoporous structures,” Chem. Eur. J. 20, 2179–2183 (2014).

[CrossRef]

S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” Exp. Mech. 50, 501–508 (2010).

[CrossRef]

S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling moiré method and its application to deflection measurements of large-scale structures,” Exp. Mech. 52, 331–340 (2012).

[CrossRef]

S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamic thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling moiré method and grating magnets,” Exp. Mech. 53, 1635–1646 (2013).

[CrossRef]

S. Avril, A. Vautrin, and Y. Surrel, “Grid method: application to the characterization of cracks,” Exp. Mech. 44, 37–43 (2004).

[CrossRef]

H. Xie, Q. Wang, S. Kishimoto, and F. Dai, “Characterization of planar periodic structure using inverse laser scanning confocal microscopy moiré method and its application in the structure of butterfly wing,” J. Appl. Phys. 101,103511 (2007).

[CrossRef]

B. Han and Y. Guo, “Thermal deformation analysis of various electronic packaging products by moiré and microscopic moiré interferometry,” J. Electron. Packaging, Trans. ASME 117, 185–191 (1995).

[CrossRef]

Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, “High precision two-dimensional spatial fringe analysis method,” J. Mod. Opt. 44, 739–751 (1997).

[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Observation of micro-deformation by moiré method using a scanning electron microscope,” J. Soc. Mat. Sci. 40, 637–641 (1991).

[CrossRef]

K. Patorski, M. Wielgus, M. Ekielski, and P. Kaźmierczak, “AFM nanomoiré technique with phase multiplication,” Meas. Sci. Technol. 24,035402 (2013).

[CrossRef]

M. J. Hÿtch, J-L. Putaux, and J-M. Pénisson, “Measurement of the displacement field of dislocations to 0.03Å by electron microscopy,” Nature 423, 270–273 (2003).

[CrossRef]

J. J. Lee and M. Shinozuka, “A vision-based system for remote sensing of bridge displacement,” NDT&E Int 39, 425–432 (2006).

[CrossRef]

J. M. Burch and C. Forno, “A high sensitivity moiré grid technique for studying deformation in large objects,” Opt. Eng. 14, 178–185 (1975).

[CrossRef]

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32, 522–526 (1993).

[CrossRef]

M. Fujigaki, K. Shimo, A. Masaya, and Y. Morimoto, “Dynamic shape and strain measurements of rotating tire using a sampling moiré method,” Opt. Eng. 50,101506 (2011).

[CrossRef]

Q. Wang, S. Kishimoto, Y. Tanaka, and Y. Kagawa, “Micro/submicro grating fabrication on metals for deformation measurement based on ultraviolet nanoimprint lithography,” Optics and Lasers in Engineering 51, 944–948 (2013).

[CrossRef]

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, 1994), Chap.4.

[CrossRef]