Abstract

Unrepeatered 42.7 Gb/s per channel RZ-DPSK transmission over standard SMF-28 fibre with novel URFL based amplification using fibre Bragg gratings is investigated. OSNR and gain performance are studied experimentally and through simulations. Error free transmission for 16 channels across the full C-band with direct detection was experimentally demonstrated for 280 km span length, as well as 6-channel transmission at 340 km and single-channel transmission up to 360 km (75 dB) without employing ROPA or specialty fibres.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steepening in silica fibers,” Appl. Phys. Lett. 29, 428–431 (1976).
    [CrossRef]
  2. J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol. 22, 79–93 (2004).
    [CrossRef]
  3. M. Vasilyev, “Raman-assisted transmission: toward ideal distributed amplification,” in Proc. OFC’03 (2003), vol. 1, pp. 303–305.
  4. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12, 4372–4377 (2004).
    [CrossRef] [PubMed]
  5. J. D. Ania-Castañón, V. Karalekas, P. Harper, S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101, 123903 (2008).
    [CrossRef] [PubMed]
  6. J. D. Ania-Castañón, V. Karalekas, J. Perez-Gonzalez, P. Harper, X. Chen, L. Zhang, “Signal power excursion and pump efficiency in quasi-lossless ultra-long Raman laser links,” in Proc. ECOC’06 (2006).
  7. V. E. Perlin, H. G. Winful, “On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification,” in Proc. OFC’02 (2002), vol. 1.
  8. M. Alcon-Camas, A. E. El-Taher, J.-D. Ania-Castañón, P. Harper, “Gain bandwidth optimisation and enhancement in ultra-long Raman fibre laser based amplifiers,” in Proc. ECOC’10 (2010), P1.17.
  9. S. Popov, S. Sergeyev, A. T. Friberg, “The impact of pump polarization on the polarization dependence of the Raman gain due to the breaking of a fibre’s circular symmetry,” J. Opt. A: Pure Appl. Opt. 6, S72 (2004).
    [CrossRef]
  10. J. C. Bouteiller, K. Brar, C. Headley, “Quasi-constant signal power transmission,” in Proc. ECOC’02 (2002), vol. 3.
  11. E. Desurvire, Erbium-Doped Fiber Amplifiers (John Wiley, 1994).
  12. P. A. Humblet, M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 11, 1576–1582 (1991).
    [CrossRef]
  13. S. D. Personick, “Receiver design for digital fiber optic communication systems II,” Bell Syst. Tech. J. 6, 875–886 (1973).
    [CrossRef]
  14. A. Klekamp, R. Dischler, W. Idler, “DWDM and single channel fibre nonlinear thresholds for 43 Gb/s ASK and DPSK formats over various fibre types,” in Proc. OFC’06 (2006), OFD5.
  15. R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
    [CrossRef]
  16. R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 5, 652–657 (1984).
    [CrossRef]

2008

J. D. Ania-Castañón, V. Karalekas, P. Harper, S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

2004

S. Popov, S. Sergeyev, A. T. Friberg, “The impact of pump polarization on the polarization dependence of the Raman gain due to the breaking of a fibre’s circular symmetry,” J. Opt. A: Pure Appl. Opt. 6, S72 (2004).
[CrossRef]

J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol. 22, 79–93 (2004).
[CrossRef]

J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12, 4372–4377 (2004).
[CrossRef] [PubMed]

1991

P. A. Humblet, M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 11, 1576–1582 (1991).
[CrossRef]

1984

R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 5, 652–657 (1984).
[CrossRef]

1976

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steepening in silica fibers,” Appl. Phys. Lett. 29, 428–431 (1976).
[CrossRef]

1973

S. D. Personick, “Receiver design for digital fiber optic communication systems II,” Bell Syst. Tech. J. 6, 875–886 (1973).
[CrossRef]

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Alcon-Camas, M.

M. Alcon-Camas, A. E. El-Taher, J.-D. Ania-Castañón, P. Harper, “Gain bandwidth optimisation and enhancement in ultra-long Raman fibre laser based amplifiers,” in Proc. ECOC’10 (2010), P1.17.

Ania-Castañón, J. D.

J. D. Ania-Castañón, V. Karalekas, P. Harper, S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12, 4372–4377 (2004).
[CrossRef] [PubMed]

J. D. Ania-Castañón, V. Karalekas, J. Perez-Gonzalez, P. Harper, X. Chen, L. Zhang, “Signal power excursion and pump efficiency in quasi-lossless ultra-long Raman laser links,” in Proc. ECOC’06 (2006).

Ania-Castañón, J.-D.

M. Alcon-Camas, A. E. El-Taher, J.-D. Ania-Castañón, P. Harper, “Gain bandwidth optimisation and enhancement in ultra-long Raman fibre laser based amplifiers,” in Proc. ECOC’10 (2010), P1.17.

Azizoglu, M.

P. A. Humblet, M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 11, 1576–1582 (1991).
[CrossRef]

Bouteiller, J. C.

J. C. Bouteiller, K. Brar, C. Headley, “Quasi-constant signal power transmission,” in Proc. ECOC’02 (2002), vol. 3.

Brar, K.

J. C. Bouteiller, K. Brar, C. Headley, “Quasi-constant signal power transmission,” in Proc. ECOC’02 (2002), vol. 3.

Bromage, J.

Chen, X.

J. D. Ania-Castañón, V. Karalekas, J. Perez-Gonzalez, P. Harper, X. Chen, L. Zhang, “Signal power excursion and pump efficiency in quasi-lossless ultra-long Raman laser links,” in Proc. ECOC’06 (2006).

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers (John Wiley, 1994).

Dischler, R.

A. Klekamp, R. Dischler, W. Idler, “DWDM and single channel fibre nonlinear thresholds for 43 Gb/s ASK and DPSK formats over various fibre types,” in Proc. OFC’06 (2006), OFD5.

El-Taher, A. E.

M. Alcon-Camas, A. E. El-Taher, J.-D. Ania-Castañón, P. Harper, “Gain bandwidth optimisation and enhancement in ultra-long Raman fibre laser based amplifiers,” in Proc. ECOC’10 (2010), P1.17.

Friberg, A. T.

S. Popov, S. Sergeyev, A. T. Friberg, “The impact of pump polarization on the polarization dependence of the Raman gain due to the breaking of a fibre’s circular symmetry,” J. Opt. A: Pure Appl. Opt. 6, S72 (2004).
[CrossRef]

Harper, P.

J. D. Ania-Castañón, V. Karalekas, P. Harper, S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

M. Alcon-Camas, A. E. El-Taher, J.-D. Ania-Castañón, P. Harper, “Gain bandwidth optimisation and enhancement in ultra-long Raman fibre laser based amplifiers,” in Proc. ECOC’10 (2010), P1.17.

J. D. Ania-Castañón, V. Karalekas, J. Perez-Gonzalez, P. Harper, X. Chen, L. Zhang, “Signal power excursion and pump efficiency in quasi-lossless ultra-long Raman laser links,” in Proc. ECOC’06 (2006).

Headley, C.

J. C. Bouteiller, K. Brar, C. Headley, “Quasi-constant signal power transmission,” in Proc. ECOC’02 (2002), vol. 3.

Humblet, P. A.

P. A. Humblet, M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 11, 1576–1582 (1991).
[CrossRef]

Idler, W.

A. Klekamp, R. Dischler, W. Idler, “DWDM and single channel fibre nonlinear thresholds for 43 Gb/s ASK and DPSK formats over various fibre types,” in Proc. OFC’06 (2006), OFD5.

Ippen, E. P.

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Jain, R. K.

R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 5, 652–657 (1984).
[CrossRef]

Karalekas, V.

J. D. Ania-Castañón, V. Karalekas, P. Harper, S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

J. D. Ania-Castañón, V. Karalekas, J. Perez-Gonzalez, P. Harper, X. Chen, L. Zhang, “Signal power excursion and pump efficiency in quasi-lossless ultra-long Raman laser links,” in Proc. ECOC’06 (2006).

Klekamp, A.

A. Klekamp, R. Dischler, W. Idler, “DWDM and single channel fibre nonlinear thresholds for 43 Gb/s ASK and DPSK formats over various fibre types,” in Proc. OFC’06 (2006), OFD5.

Lee, C.

R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 5, 652–657 (1984).
[CrossRef]

Lin, C.

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steepening in silica fibers,” Appl. Phys. Lett. 29, 428–431 (1976).
[CrossRef]

Perez-Gonzalez, J.

J. D. Ania-Castañón, V. Karalekas, J. Perez-Gonzalez, P. Harper, X. Chen, L. Zhang, “Signal power excursion and pump efficiency in quasi-lossless ultra-long Raman laser links,” in Proc. ECOC’06 (2006).

Perlin, V. E.

V. E. Perlin, H. G. Winful, “On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification,” in Proc. OFC’02 (2002), vol. 1.

Personick, S. D.

S. D. Personick, “Receiver design for digital fiber optic communication systems II,” Bell Syst. Tech. J. 6, 875–886 (1973).
[CrossRef]

Popov, S.

S. Popov, S. Sergeyev, A. T. Friberg, “The impact of pump polarization on the polarization dependence of the Raman gain due to the breaking of a fibre’s circular symmetry,” J. Opt. A: Pure Appl. Opt. 6, S72 (2004).
[CrossRef]

Sergeyev, S.

S. Popov, S. Sergeyev, A. T. Friberg, “The impact of pump polarization on the polarization dependence of the Raman gain due to the breaking of a fibre’s circular symmetry,” J. Opt. A: Pure Appl. Opt. 6, S72 (2004).
[CrossRef]

Stolen, R. H.

R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 5, 652–657 (1984).
[CrossRef]

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steepening in silica fibers,” Appl. Phys. Lett. 29, 428–431 (1976).
[CrossRef]

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Turitsyn, S. K.

J. D. Ania-Castañón, V. Karalekas, P. Harper, S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

Vasilyev, M.

M. Vasilyev, “Raman-assisted transmission: toward ideal distributed amplification,” in Proc. OFC’03 (2003), vol. 1, pp. 303–305.

Winful, H. G.

V. E. Perlin, H. G. Winful, “On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification,” in Proc. OFC’02 (2002), vol. 1.

Zhang, L.

J. D. Ania-Castañón, V. Karalekas, J. Perez-Gonzalez, P. Harper, X. Chen, L. Zhang, “Signal power excursion and pump efficiency in quasi-lossless ultra-long Raman laser links,” in Proc. ECOC’06 (2006).

Appl. Phys. Lett.

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steepening in silica fibers,” Appl. Phys. Lett. 29, 428–431 (1976).
[CrossRef]

Bell Syst. Tech. J.

S. D. Personick, “Receiver design for digital fiber optic communication systems II,” Bell Syst. Tech. J. 6, 875–886 (1973).
[CrossRef]

J. Lightwave Technol.

J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol. 22, 79–93 (2004).
[CrossRef]

P. A. Humblet, M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 11, 1576–1582 (1991).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

S. Popov, S. Sergeyev, A. T. Friberg, “The impact of pump polarization on the polarization dependence of the Raman gain due to the breaking of a fibre’s circular symmetry,” J. Opt. A: Pure Appl. Opt. 6, S72 (2004).
[CrossRef]

J. Opt. Soc. Am. B

R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 5, 652–657 (1984).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

J. D. Ania-Castañón, V. Karalekas, P. Harper, S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101, 123903 (2008).
[CrossRef] [PubMed]

Other

J. D. Ania-Castañón, V. Karalekas, J. Perez-Gonzalez, P. Harper, X. Chen, L. Zhang, “Signal power excursion and pump efficiency in quasi-lossless ultra-long Raman laser links,” in Proc. ECOC’06 (2006).

V. E. Perlin, H. G. Winful, “On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification,” in Proc. OFC’02 (2002), vol. 1.

M. Alcon-Camas, A. E. El-Taher, J.-D. Ania-Castañón, P. Harper, “Gain bandwidth optimisation and enhancement in ultra-long Raman fibre laser based amplifiers,” in Proc. ECOC’10 (2010), P1.17.

J. C. Bouteiller, K. Brar, C. Headley, “Quasi-constant signal power transmission,” in Proc. ECOC’02 (2002), vol. 3.

E. Desurvire, Erbium-Doped Fiber Amplifiers (John Wiley, 1994).

A. Klekamp, R. Dischler, W. Idler, “DWDM and single channel fibre nonlinear thresholds for 43 Gb/s ASK and DPSK formats over various fibre types,” in Proc. OFC’06 (2006), OFD5.

M. Vasilyev, “Raman-assisted transmission: toward ideal distributed amplification,” in Proc. OFC’03 (2003), vol. 1, pp. 303–305.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for OSNR and on-off gain measurement in URFL based amplifier with high reflectivity FBGs. Input power into the span is controlled by VOA connected to control unit (CU) and power meter (PM). FW: forward, BW: backward Raman pump.

Fig. 2
Fig. 2

Comparison of FBGs at 1448nm (red) and 1458nm (black).

Fig. 3
Fig. 3

Forward (left) and backward (right) pump power optimisation.

Fig. 4
Fig. 4

On-off gain (left) and OSNR (right) measurement results for the best (solid) and the worst (dashed) performing channel. Measured span loss is marked in black.

Fig. 5
Fig. 5

Simulation results for OSNR (left) measured for a single channel in the middle of the 14 dBm grid at 1550 nm. Dashed lines are experimental results for the best (blue) and worst (green) performing channel. Signal power distribution in 360 km link is shown on the right.

Fig. 6
Fig. 6

Experimental setup for 42.7 Gb/s RZ-DPSK transmission with URFL based amplifier. CU: control unit; PM: power meter; P: (CO) forward and (CT) backward-propagating pump; DCM: dispersion compensation module; TF: tuneable filter; TDCM: tuneable dispersion compensating module; DLI: delay line interferometer; SDA: serial data analyser.

Fig. 7
Fig. 7

Transmitted (blue) and received (red) spectra in DPSK transmission.

Fig. 8
Fig. 8

Experimental results of DPSK unrepeatered transmission performance (top) and received OSNR for 280 km, 320 km, 340 km and 360 km.

Tables (1)

Tables Icon

Table 1 Forward and backward Raman pump powers

Metrics