Abstract

We demonstrate the design, fabrication and characterization of a highly nonlinear graded-index SiGe waveguide for the conversion of mid-infrared signals to the near-infrared. Using phase-matched four-wave mixing, we report the conversion of a signal at 2.65 µm to 1.77 µm using a pump at 2.12 µm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yao, A. J. Hoffman, C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [CrossRef]
  2. K. D. Buchter, M. C. Wiegand, H. Herrmann, and W. Sohler, “Nonlinear optical down- and up-conversion in PPLN waveguides for mid-infrared spectroscopy,” in CLEO Europe (2009), paper CD_P8.
  3. T. W. Neely, L. Nugent-Glandorf, F. Adler, S. A. Diddams, “Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide,” Opt. Lett. 37(20), 4332–4334 (2012).
    [CrossRef] [PubMed]
  4. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
    [CrossRef] [PubMed]
  5. B. Kuyken, X. Liu, R. M. Osgood, Y. A. Vlasov, G. Roelkens, R. Baets, and W. M. J. Green, “Frequency conversion of mid-infrared optical signals into the telecom band using nonlinear silicon nanophotonic wires,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011(Optical Society of America, 2011), paper OThU4.
    [CrossRef]
  6. N. K. Hon, R. Soref, B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
    [CrossRef]
  7. M. A. Ettabib, K. Hammani, F. Parmigiani, L. Jones, A. Kapsalis, A. Bogris, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, “FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide,” Opt. Express 21(14), 16683–16689 (2013).
    [CrossRef] [PubMed]
  8. K. Hammani, M. A. Ettabib, A. Bogris, A. Kapsalis, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, D. J. Richardson, P. Petropoulos, “Optical properties of silicon germanium waveguides at telecommunication wavelengths,” Opt. Express 21(14), 16690–16701 (2013).
    [CrossRef] [PubMed]
  9. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
    [CrossRef] [PubMed]
  10. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003).
    [CrossRef] [PubMed]
  11. S. Pitois, G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226(1-6), 415–422 (2003).
    [CrossRef]
  12. P. Barritault, M. Brun, P. Labeye, O. Lartigue, J.-M. Hartmann, S. Nicoletti, “Mlines characterization of the refractive index profile of SiGe gradient waveguides at 2.15 µm,” Opt. Express 21(9), 11506–11515 (2013).
    [CrossRef] [PubMed]
  13. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008).
    [CrossRef] [PubMed]
  14. K.-D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34(4), 470–472 (2009).
    [CrossRef] [PubMed]
  15. S. P. Jung, Z. Sanja, M. Slaven, M. C.-B. Jose, B. D. Ivan, M. Shayan, and R. Stojan, “Mid-Infrared Four-Wave Mixing in Silicon Waveguides Using Telecom-Compatible Light Sources,” in Frontiers in Optics (Optical Society of America, 2009), paper PDPB3.
  16. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
    [CrossRef]

2013

2012

2011

2010

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

2009

2008

2003

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003).
[CrossRef] [PubMed]

S. Pitois, G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226(1-6), 415–422 (2003).
[CrossRef]

Adler, F.

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Atanackovic, P.

Baets, R.

Barritault, P.

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Bogris, A.

Brun, M.

Büchter, K.-D. F.

Coen, S.

Diddams, S. A.

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Duvall, S. G.

Eggleton, B. J.

Ettabib, M. A.

Fejer, M. M.

Gmachl, C. F.

Y. Yao, A. J. Hoffman, C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[CrossRef]

Green, W. M. J.

Grillet, C.

Hammani, K.

Hartmann, J.-M.

Harvey, J. D.

Herrmann, H.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[CrossRef]

Hon, N. K.

N. K. Hon, R. Soref, B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[CrossRef]

Hudson, D.

Jackson, S. D.

Jalali, B.

N. K. Hon, R. Soref, B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[CrossRef]

Johnson, T. J.

Jones, L.

Kapsalis, A.

Knight, J. C.

Kuyken, B.

Labeye, P.

Langrock, C.

Lartigue, O.

Leonhardt, R.

Li, F.

Lin, Q.

Liu, X.

Madden, S. J.

Magi, E.

Michael, C. P.

Millot, G.

S. Pitois, G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226(1-6), 415–422 (2003).
[CrossRef]

Moghe, Y.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Moss, D. J.

Neely, T. W.

Nicoletti, S.

Nugent-Glandorf, L.

O’Brien, C.

Osgood, R. M.

Painter, O. J.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Parmigiani, F.

Perahia, R.

Petropoulos, P.

Pitois, S.

S. Pitois, G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226(1-6), 415–422 (2003).
[CrossRef]

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Read, A.

Richardson, D. J.

Roelkens, G.

Russell, P. S. J.

Sohler, W.

Soref, R.

N. K. Hon, R. Soref, B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[CrossRef]

Syvridis, D.

Wadsworth, W. J.

Wong, G. K. L.

Yao, Y.

Y. Yao, A. J. Hoffman, C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[CrossRef]

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

J. Appl. Phys.

N. K. Hon, R. Soref, B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[CrossRef]

Nat. Photonics

Y. Yao, A. J. Hoffman, C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Opt. Commun.

S. Pitois, G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226(1-6), 415–422 (2003).
[CrossRef]

Opt. Express

P. Barritault, M. Brun, P. Labeye, O. Lartigue, J.-M. Hartmann, S. Nicoletti, “Mlines characterization of the refractive index profile of SiGe gradient waveguides at 2.15 µm,” Opt. Express 21(9), 11506–11515 (2013).
[CrossRef] [PubMed]

Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

M. A. Ettabib, K. Hammani, F. Parmigiani, L. Jones, A. Kapsalis, A. Bogris, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, P. Petropoulos, “FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide,” Opt. Express 21(14), 16683–16689 (2013).
[CrossRef] [PubMed]

K. Hammani, M. A. Ettabib, A. Bogris, A. Kapsalis, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, D. J. Richardson, P. Petropoulos, “Optical properties of silicon germanium waveguides at telecommunication wavelengths,” Opt. Express 21(14), 16690–16701 (2013).
[CrossRef] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Other

S. P. Jung, Z. Sanja, M. Slaven, M. C.-B. Jose, B. D. Ivan, M. Shayan, and R. Stojan, “Mid-Infrared Four-Wave Mixing in Silicon Waveguides Using Telecom-Compatible Light Sources,” in Frontiers in Optics (Optical Society of America, 2009), paper PDPB3.

B. Kuyken, X. Liu, R. M. Osgood, Y. A. Vlasov, G. Roelkens, R. Baets, and W. M. J. Green, “Frequency conversion of mid-infrared optical signals into the telecom band using nonlinear silicon nanophotonic wires,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011(Optical Society of America, 2011), paper OThU4.
[CrossRef]

K. D. Buchter, M. C. Wiegand, H. Herrmann, and W. Sohler, “Nonlinear optical down- and up-conversion in PPLN waveguides for mid-infrared spectroscopy,” in CLEO Europe (2009), paper CD_P8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Graded index profile of the waveguide, (b) Estimated dispersion curve. The red point corresponds to zero dispersion wavelength. (c) Corresponding phase matching diagram. The white stars (resp. triangles) correspond to the signal (resp. idler) wavelengths leading to the best conversion efficiency experimentally.

Fig. 2
Fig. 2

(a) Scanning Electron Microscopy (SEM) image of the SiGe waveguide, (b) Sketch of the SiGe waveguide

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

(a) Spectra for a signal at 2371 nm (green line) and at 2399 nm (blue line). (b) Spectra obtained for a signal centered at 2650 nm. For both spectra, the pump wavelength is 2122 nm.

Fig. 5
Fig. 5

Conversion efficiency as a function of the signal wavelength. Comparison between experiments (black dots) and numerical simulation for the dispersion shown in Fig. 2(a) (blue solid line) and for the zero dispersion shifted of + 6 nm (green dashed line) and - 6 nm (red dashed line).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β 2 ω 2 + β 4 12 ω 4 +2γP=0
Ω opt = 2 3( 3 β 2 2 2 β 4 γP ) β 4 6 β 2 β 4
n= n(x,y)| E | 2 dxdy | E | 2 dxdy

Metrics