Abstract

We show that silicon microrings with adiabatically widened bends are more tolerant to dimensional variations than conventional microring designs with uniform waveguide widths. Through wafer-scale measurements of test structures fabricated in the IMEC Standard Passives process (193 nm DUV lithography, 200 mm SOI wafer), improvements in the intra-die and wafer-scale variation of the resonance wavelength are demonstrated. A 2.1× reduction in the standard deviation of the resonance wavelength across the wafer was observed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, M. Rooks, L. Sekaric, Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934–11941 (2007).
    [CrossRef] [PubMed]
  2. J. R. Ong, R. Kumar, S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
    [CrossRef]
  3. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
    [CrossRef]
  4. A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
    [CrossRef]
  5. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
    [CrossRef]
  6. G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
    [CrossRef]
  7. M. A. Popovic, T. Barwicz, E. P. Ippen, F. X. Kartner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2006), p. CTuCC.
  8. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quant. Elect. 16, 316–324 (2010).
    [CrossRef]
  9. T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nature Photonics 6, 206–208 (2012).
    [CrossRef]
  10. X. Chen, M. Mohamed, Z. Li, L. Shang, A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52, 7638–7647 (2013).
    [CrossRef] [PubMed]
  11. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
    [CrossRef] [PubMed]
  12. W. A. Zortman, D. C. Trotter, M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
    [CrossRef] [PubMed]
  13. M. R. Watts, “Adiabatic microring resonators,” Opt. Lett. 35, 3231–3233 (2010).
    [CrossRef] [PubMed]
  14. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2009), p. CPDB10.
  15. A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
    [CrossRef]
  16. J. C. Mikkelsen, W. D. Sacher, J. K. S. Poon, “Adiabatically widened silicon microring resonators with improved tolerance to wafer-scale variations,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.12.
  17. Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, G. Leake, D. D. Coolbaugh, M. R. Watts, “Reduced wafer-scale frequency variation in adiabatic microring resonators,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.55.
  18. F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photon. 1, 65–71 (2007).
    [CrossRef]
  19. J. Cardenas, P. A. Morton, J. B. Khurgin, C. B. Poitras, M. Lipson, “Super-ring resonators: Taking advantage of resonance variability,” “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTu3I.4.
  20. J. C. Mikkelsen, W. D. Sacher, J. K. S. Poon, “Dimensional variation tolerant silicon-on-insulator directional couplers,” Opt. Express 22, 3145–3150, (2014).
    [CrossRef] [PubMed]

2014 (1)

2013 (3)

X. Chen, M. Mohamed, Z. Li, L. Shang, A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52, 7638–7647 (2013).
[CrossRef] [PubMed]

J. R. Ong, R. Kumar, S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[CrossRef]

G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
[CrossRef]

2012 (3)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nature Photonics 6, 206–208 (2012).
[CrossRef]

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[CrossRef]

2011 (1)

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

2010 (4)

2009 (1)

2007 (2)

Asghari, M.

Baehr-Jones, T.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nature Photonics 6, 206–208 (2012).
[CrossRef]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quant. Elect. 16, 316–324 (2010).
[CrossRef]

Barwicz, T.

M. A. Popovic, T. Barwicz, E. P. Ippen, F. X. Kartner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2006), p. CTuCC.

Biberman, A.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quant. Elect. 16, 316–324 (2010).
[CrossRef]

Cardenas, J.

J. Cardenas, P. A. Morton, J. B. Khurgin, C. B. Poitras, M. Lipson, “Super-ring resonators: Taking advantage of resonance variability,” “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTu3I.4.

Chen, X.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

Coolbaugh, D. D.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, G. Leake, D. D. Coolbaugh, M. R. Watts, “Reduced wafer-scale frequency variation in adiabatic microring resonators,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.55.

Cunningham, J.

G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
[CrossRef]

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

Danziger, S.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nature Photonics 6, 206–208 (2012).
[CrossRef]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

Dong, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quant. Elect. 16, 316–324 (2010).
[CrossRef]

Feng, D.

Feng, N.-N.

Hochberg, M.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nature Photonics 6, 206–208 (2012).
[CrossRef]

Hosseini, E. S.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, G. Leake, D. D. Coolbaugh, M. R. Watts, “Reduced wafer-scale frequency variation in adiabatic microring resonators,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.55.

Ippen, E. P.

M. A. Popovic, T. Barwicz, E. P. Ippen, F. X. Kartner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2006), p. CTuCC.

Kartner, F. X.

M. A. Popovic, T. Barwicz, E. P. Ippen, F. X. Kartner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2006), p. CTuCC.

Khurgin, J. B.

J. Cardenas, P. A. Morton, J. B. Khurgin, C. B. Poitras, M. Lipson, “Super-ring resonators: Taking advantage of resonance variability,” “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTu3I.4.

Krishnamoorthy, A.

G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
[CrossRef]

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

Krishnamoorthy, A. V.

Kumar, R.

J. R. Ong, R. Kumar, S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[CrossRef]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

Kung, C.-C.

Leake, G.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, G. Leake, D. D. Coolbaugh, M. R. Watts, “Reduced wafer-scale frequency variation in adiabatic microring resonators,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.55.

Li, G.

G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
[CrossRef]

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
[CrossRef]

Li, Z.

Liang, H.

Liao, S.

Lipson, M.

J. Cardenas, P. A. Morton, J. B. Khurgin, C. B. Poitras, M. Lipson, “Super-ring resonators: Taking advantage of resonance variability,” “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTu3I.4.

Lo, G.-Q.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nature Photonics 6, 206–208 (2012).
[CrossRef]

Luck, D. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2009), p. CPDB10.

Luo, Y.

G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
[CrossRef]

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

Mekis, A.

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

Mickelson, A. R.

Mikkelsen, J. C.

J. C. Mikkelsen, W. D. Sacher, J. K. S. Poon, “Dimensional variation tolerant silicon-on-insulator directional couplers,” Opt. Express 22, 3145–3150, (2014).
[CrossRef] [PubMed]

J. C. Mikkelsen, W. D. Sacher, J. K. S. Poon, “Adiabatically widened silicon microring resonators with improved tolerance to wafer-scale variations,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.12.

Mohamed, M.

Mookherjea, S.

J. R. Ong, R. Kumar, S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[CrossRef]

Morton, P. A.

J. Cardenas, P. A. Morton, J. B. Khurgin, C. B. Poitras, M. Lipson, “Super-ring resonators: Taking advantage of resonance variability,” “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTu3I.4.

Nielson, G. N.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2009), p. CPDB10.

Ong, J. R.

J. R. Ong, R. Kumar, S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[CrossRef]

Pinguet, T.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nature Photonics 6, 206–208 (2012).
[CrossRef]

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

Poitras, C. B.

J. Cardenas, P. A. Morton, J. B. Khurgin, C. B. Poitras, M. Lipson, “Super-ring resonators: Taking advantage of resonance variability,” “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTu3I.4.

Poon, J. K. S.

J. C. Mikkelsen, W. D. Sacher, J. K. S. Poon, “Dimensional variation tolerant silicon-on-insulator directional couplers,” Opt. Express 22, 3145–3150, (2014).
[CrossRef] [PubMed]

J. C. Mikkelsen, W. D. Sacher, J. K. S. Poon, “Adiabatically widened silicon microring resonators with improved tolerance to wafer-scale variations,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.12.

Popovic, M. A.

M. A. Popovic, T. Barwicz, E. P. Ippen, F. X. Kartner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2006), p. CTuCC.

Prather, D.

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nature Photonics 6, 206–208 (2012).
[CrossRef]

Qian, W.

Raj, K.

G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
[CrossRef]

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

Rooks, M.

Sacher, W. D.

J. C. Mikkelsen, W. D. Sacher, J. K. S. Poon, “Dimensional variation tolerant silicon-on-insulator directional couplers,” Opt. Express 22, 3145–3150, (2014).
[CrossRef] [PubMed]

J. C. Mikkelsen, W. D. Sacher, J. K. S. Poon, “Adiabatically widened silicon microring resonators with improved tolerance to wafer-scale variations,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.12.

Sekaric, L.

Selvaraja, S.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quant. Elect. 16, 316–324 (2010).
[CrossRef]

Shafiiha, R.

Shang, L.

Shubin, I.

G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
[CrossRef]

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

Su, Z.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, G. Leake, D. D. Coolbaugh, M. R. Watts, “Reduced wafer-scale frequency variation in adiabatic microring resonators,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.55.

Sun, J.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, G. Leake, D. D. Coolbaugh, M. R. Watts, “Reduced wafer-scale frequency variation in adiabatic microring resonators,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.55.

Thacker, H.

G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
[CrossRef]

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

Timurdogan, E.

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[CrossRef]

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, G. Leake, D. D. Coolbaugh, M. R. Watts, “Reduced wafer-scale frequency variation in adiabatic microring resonators,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.55.

Trotter, D. C.

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[CrossRef]

W. A. Zortman, D. C. Trotter, M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[CrossRef] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2009), p. CPDB10.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quant. Elect. 16, 316–324 (2010).
[CrossRef]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

Vlasov, Y.

Watts, M. R.

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[CrossRef]

W. A. Zortman, D. C. Trotter, M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[CrossRef] [PubMed]

M. R. Watts, “Adiabatic microring resonators,” Opt. Lett. 35, 3231–3233 (2010).
[CrossRef] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2009), p. CPDB10.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, G. Leake, D. D. Coolbaugh, M. R. Watts, “Reduced wafer-scale frequency variation in adiabatic microring resonators,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.55.

Xia, F.

Yao, J.

G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
[CrossRef]

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2009), p. CPDB10.

Zheng, D.

Zheng, X.

G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
[CrossRef]

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010).
[CrossRef] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
[CrossRef]

Zortman, W. A.

A. Biberman, E. Timurdogan, W. A. Zortman, D. C. Trotter, M. R. Watts, “Adiabatic microring modulators,” Opt. Express 20, 29223–29236 (2012).
[CrossRef]

W. A. Zortman, D. C. Trotter, M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
[CrossRef] [PubMed]

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2009), p. CPDB10.

Appl. Opt. (1)

IEEE J. Sel. Top. Quant. Elect. (2)

G. Li, A. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quant. Elect. 19, 3401819 (2013).
[CrossRef]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using cmos fabrication technology,” IEEE J. Sel. Top. Quant. Elect. 16, 316–324 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. R. Ong, R. Kumar, S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photon. Technol. Lett. 25, 1543–1546 (2013).
[CrossRef]

IEEE Photonics Journal (1)

A. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
[CrossRef]

Laser and Photonics Reviews (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser and Photonics Reviews 6, 47–73 (2012).
[CrossRef]

Nat. Photon. (1)

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photon. 1, 65–71 (2007).
[CrossRef]

Nature Photonics (1)

T. Baehr-Jones, T. Pinguet, G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nature Photonics 6, 206–208 (2012).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Other (5)

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2009), p. CPDB10.

J. C. Mikkelsen, W. D. Sacher, J. K. S. Poon, “Adiabatically widened silicon microring resonators with improved tolerance to wafer-scale variations,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.12.

Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, G. Leake, D. D. Coolbaugh, M. R. Watts, “Reduced wafer-scale frequency variation in adiabatic microring resonators,” “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.55.

J. Cardenas, P. A. Morton, J. B. Khurgin, C. B. Poitras, M. Lipson, “Super-ring resonators: Taking advantage of resonance variability,” “Conference on Lasers and Electro-Optics 2012,” (Optical Society of America, 2012), p. CTu3I.4.

M. A. Popovic, T. Barwicz, E. P. Ippen, F. X. Kartner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” “Conference on Lasers and Electro-Optics/International Quantum Electronics Conference,” (Optical Society of America, 2006), p. CTuCC.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of an adiabatically widened silicon microring resonator. (b) The computed phase sensitivity of a semi-circular widened bend of radius 15 μm as a function of Wmax for a wavelength of 1550 nm. The inset illustrates the definition of the waveguide width deviation, α. (c) Electric field intensity profile computed using 3D FDTD of the bend with Wmax = 2.0 μm. The field profiles taken at selected cross-sections show that the mode is adiabatically converted to the fundamental WGM at the apex.

Fig. 2
Fig. 2

(a) Schematic of the intra-die variation test structure. N microrings are coupled to a common bus waveguide. (b) Optical micrograph showing a part of a pair of test structures. (c) Transmission spectra of 1, 2, 5, and 10 bus-coupled widened microrings. The spectrum of the 10-microring structure is red-shifted because it is located in a different area of the die. (d) Wavelength-centered transmission spectra of the 20-microring long test structures. The FWHM characterizes the intra-die variation.

Fig. 3
Fig. 3

(a) Optical micrograph of a compact adiabatically widened microring. Wafer maps of the resonance wavelength λres for (b) widened (Wmax = 1.2 μm) and (c) standard (500 nm wide strip waveguide) microrings.

Fig. 4
Fig. 4

(a) Optical micrograph of an adiabatically widened microring with ridge waveguide couplers. Wafer maps of the resonance wavelength λres for (b) widened (Wmax = 2.0 μm) and (c) standard (500 nm wide strip waveguide) microrings.

Tables (2)

Tables Icon

Table 1 Intra-die variations of the widened and standard microrings

Tables Icon

Table 2 Wafer-scale variations of the widened and standard microrings

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ bend = c 2 π λ n eff ( s ) d s ,
W ( θ ) = W max 4 ( W max W min ) π 2 ( θ π / 2 ) 2 ,

Metrics