Abstract

Time-resolved coherent anti-Stokes Raman scattering (T-CARS) microscopy is a technique known for suppressing non-resonant background by utilizing the different temporal responses of virtual electronic transitions and Raman transitions. However, the previous use of femtosecond excitations in T-CARS microscopy has led to low spectral resolution and difficulty in selectively exciting a single Raman band. Here, we report an improved T-CARS imaging technique with chirped pump and Stokes excitations, and the Stokes pulses were shaped into square pulses. Using a femtosecond probe, we acquired T-CARS images with a high spectral resolution, suppressed non-resonant background, and high resonant signal level. We experimentally demonstrated the selective excitation of two close Raman bands of polystyrene at 1005 cm−1 and 1035 cm−1 using our technique; conventional T-CARS would inevitably excite them both with little selectivity. Our novel technique could become an ideal method for high-sensitivity, background-free imaging of single Raman bands for a wide variety of samples.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  2. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [CrossRef] [PubMed]
  3. A. Zumbusch, W. Langbein, P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
    [CrossRef] [PubMed]
  4. R. Mouras, P. Bagnaninchi, A. Downes, A. Elfick, “Multimodal, label-free nonlinear optical imaging for applications in biology and biomedical science,” J. Raman Spectrosc. 44(10), 1373–1378 (2013).
    [CrossRef]
  5. C. Patel, C. Steuwe, S. Reichelt, S. Mahajan, “Coherent anti-Stokes Raman scattering for label-free biomedical imaging,” J. Opt. 15(9), 094006 (2013).
    [CrossRef]
  6. S. Bégin, E. Bélanger, S. Laffray, B. Aubé, E. Chamma, J. Bélisle, S. Lacroix, Y. De Koninck, D. Côté, “Local assessment of myelin health in a multiple sclerosis mouse model using a 2D Fourier transform approach,” Biomed. Opt. Express 4(10), 2003–2014 (2013).
    [CrossRef] [PubMed]
  7. J. H. Lee, J. C. Kim, G. Tae, M. K. Oh, D. K. Ko, “Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging,” J. Biomed. Opt. 18(7), 076009 (2013).
    [CrossRef] [PubMed]
  8. X. Y. Xu, J. Cheng, M. J. Thrall, Z. F. Liu, X. Wang, S. T. C. Wong, “Multimodal non-linear optical imaging for label-free differentiation of lung cancerous lesions from normal and desmoplastic tissues,” Biomed. Opt. Express 4(12), 2855–2868 (2013).
    [CrossRef] [PubMed]
  9. N. A. Belsey, N. L. Garrett, L. R. Contreras-Rojas, A. J. Pickup-Gerlaugh, G. J. Price, J. Moger, R. H. Guy, “Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies,” J. Control. Release 174, 37–42 (2014).
    [CrossRef] [PubMed]
  10. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  11. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
    [CrossRef] [PubMed]
  12. C. W. Freudiger, W. L. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
    [CrossRef]
  13. J. X. Cheng, L. D. Book, X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
    [CrossRef] [PubMed]
  14. F. Lu, W. Zheng, Z. Huang, “Elliptically polarized coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 33(23), 2842–2844 (2008).
    [CrossRef] [PubMed]
  15. A. Volkmer, L. D. Book, X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
    [CrossRef]
  16. E. O. Potma, C. L. Evans, X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
    [CrossRef] [PubMed]
  17. F. Lu, W. Zheng, C. Sheppard, Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
    [CrossRef] [PubMed]
  18. I. Rocha-Mendoza, W. Langbein, P. Watson, P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett. 34(15), 2258–2260 (2009).
    [CrossRef] [PubMed]
  19. B. C. Chen, J. H. Sung, X. X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
    [CrossRef] [PubMed]
  20. N. Dudovich, D. Oron, Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [CrossRef] [PubMed]
  21. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B 22(9), 1934–1938 (2005).
    [CrossRef]
  22. H. Kano, H. Hamaguchi, “Ultrabroadband (> 2500 cm(−1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
    [CrossRef]
  23. B. C. Chen, S. H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008).
    [CrossRef] [PubMed]
  24. A. Pegoraro, A. Ridsdale, R. Lyn, J. Pezacki, A. Stolow, “Simple High Performance Multi-modal Coherent Anti-Stokes Raman Scattering (CARS) Microscopy Based on a Two-Photon Microscope,” Microsc. Microanal. 14(S2), 758–759 (2008).
    [CrossRef]
  25. Y. Silberberg, “Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy,” in Annu. Rev. Phys. Chem.(2009), pp. 277–292.
  26. A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42(10), 1859–1863 (2011).
    [CrossRef]
  27. P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. W. Xu, S. Roy, J. R. Gord, M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42(3), 393–398 (2011).
    [CrossRef]
  28. S. Roy, T. R. Meyer, J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
    [CrossRef]
  29. B. von Vacano, M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
    [CrossRef] [PubMed]
  30. S. Roy, J. R. Gord, A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
    [CrossRef]
  31. P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
    [CrossRef]
  32. T. Hellerer, A. M. K. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broadbandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
    [CrossRef]
  33. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
    [CrossRef] [PubMed]
  34. I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
    [CrossRef]
  35. H. T. Beier, G. D. Noojin, B. A. Rockwell, “Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications,” Opt. Express 19(20), 18885–18892 (2011).
    [CrossRef] [PubMed]
  36. D. Pestov, X. Wang, R. K. Murawski, G. O. Ariunbold, V. A. Sautenkov, A. V. Sokolov, “Pulse shaping for mode-selective ultrafast coherent Raman spectroscopy of highly scattering solids,” J. Opt. Soc. Am. B 25(5), 768–772 (2008).
    [CrossRef]
  37. P. J. Wrzesinski, S. Roy, J. R. Gord, “Interference-free coherence dynamics of gas-phase molecules using spectral focusing,” Opt. Express 20(21), 23390–23397 (2012).
    [CrossRef] [PubMed]
  38. J.- Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
    [CrossRef]
  39. S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
    [CrossRef] [PubMed]
  40. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N-2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
    [CrossRef]
  41. S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
    [CrossRef]
  42. A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128-Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
    [CrossRef]
  43. T. R. Gilson, J. M. Hollas, E. Khalilipour, J. V. Warrington, “Vibrational Assignments for Styrene-β-D2 from the Infrared and Raman Spectra,” J. Mol. Spectrosc. 73(2), 234–239 (1978).
    [CrossRef]
  44. M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

2014 (2)

N. A. Belsey, N. L. Garrett, L. R. Contreras-Rojas, A. J. Pickup-Gerlaugh, G. J. Price, J. Moger, R. H. Guy, “Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies,” J. Control. Release 174, 37–42 (2014).
[CrossRef] [PubMed]

C. W. Freudiger, W. L. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

2013 (8)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[CrossRef] [PubMed]

A. Zumbusch, W. Langbein, P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
[CrossRef] [PubMed]

R. Mouras, P. Bagnaninchi, A. Downes, A. Elfick, “Multimodal, label-free nonlinear optical imaging for applications in biology and biomedical science,” J. Raman Spectrosc. 44(10), 1373–1378 (2013).
[CrossRef]

C. Patel, C. Steuwe, S. Reichelt, S. Mahajan, “Coherent anti-Stokes Raman scattering for label-free biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[CrossRef]

S. Bégin, E. Bélanger, S. Laffray, B. Aubé, E. Chamma, J. Bélisle, S. Lacroix, Y. De Koninck, D. Côté, “Local assessment of myelin health in a multiple sclerosis mouse model using a 2D Fourier transform approach,” Biomed. Opt. Express 4(10), 2003–2014 (2013).
[CrossRef] [PubMed]

J. H. Lee, J. C. Kim, G. Tae, M. K. Oh, D. K. Ko, “Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging,” J. Biomed. Opt. 18(7), 076009 (2013).
[CrossRef] [PubMed]

X. Y. Xu, J. Cheng, M. J. Thrall, Z. F. Liu, X. Wang, S. T. C. Wong, “Multimodal non-linear optical imaging for label-free differentiation of lung cancerous lesions from normal and desmoplastic tissues,” Biomed. Opt. Express 4(12), 2855–2868 (2013).
[CrossRef] [PubMed]

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[CrossRef]

2012 (1)

2011 (4)

H. T. Beier, G. D. Noojin, B. A. Rockwell, “Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications,” Opt. Express 19(20), 18885–18892 (2011).
[CrossRef] [PubMed]

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42(10), 1859–1863 (2011).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. W. Xu, S. Roy, J. R. Gord, M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42(3), 393–398 (2011).
[CrossRef]

B. C. Chen, J. H. Sung, X. X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

2010 (3)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

S. Roy, J. R. Gord, A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[CrossRef]

2009 (3)

2008 (9)

I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[CrossRef]

D. Pestov, X. Wang, R. K. Murawski, G. O. Ariunbold, V. A. Sautenkov, A. V. Sokolov, “Pulse shaping for mode-selective ultrafast coherent Raman spectroscopy of highly scattering solids,” J. Opt. Soc. Am. B 25(5), 768–772 (2008).
[CrossRef]

B. von Vacano, M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

B. C. Chen, S. H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

A. Pegoraro, A. Ridsdale, R. Lyn, J. Pezacki, A. Stolow, “Simple High Performance Multi-modal Coherent Anti-Stokes Raman Scattering (CARS) Microscopy Based on a Two-Photon Microscope,” Microsc. Microanal. 14(S2), 758–759 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

F. Lu, W. Zheng, C. Sheppard, Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
[CrossRef] [PubMed]

F. Lu, W. Zheng, Z. Huang, “Elliptically polarized coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 33(23), 2842–2844 (2008).
[CrossRef] [PubMed]

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
[CrossRef] [PubMed]

2006 (1)

2005 (3)

E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B 22(9), 1934–1938 (2005).
[CrossRef]

H. Kano, H. Hamaguchi, “Ultrabroadband (> 2500 cm(−1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

S. Roy, T. R. Meyer, J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

2004 (2)

T. Hellerer, A. M. K. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broadbandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[CrossRef]

J. X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

2002 (2)

N. Dudovich, D. Oron, Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

2001 (2)

J. X. Cheng, L. D. Book, X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

J.- Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128-Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[CrossRef]

1978 (1)

T. R. Gilson, J. M. Hollas, E. Khalilipour, J. V. Warrington, “Vibrational Assignments for Styrene-β-D2 from the Infrared and Raman Spectra,” J. Mol. Spectrosc. 73(2), 234–239 (1978).
[CrossRef]

Andresen, E. R.

Ariunbold, G. O.

Aubé, B.

Bagnaninchi, P.

R. Mouras, P. Bagnaninchi, A. Downes, A. Elfick, “Multimodal, label-free nonlinear optical imaging for applications in biology and biomedical science,” J. Raman Spectrosc. 44(10), 1373–1378 (2013).
[CrossRef]

Bégin, S.

Beier, H. T.

Bélanger, E.

Bélisle, J.

Belsey, N. A.

N. A. Belsey, N. L. Garrett, L. R. Contreras-Rojas, A. J. Pickup-Gerlaugh, G. J. Price, J. Moger, R. H. Guy, “Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies,” J. Control. Release 174, 37–42 (2014).
[CrossRef] [PubMed]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[CrossRef] [PubMed]

Birkedal, V.

Book, L. D.

A. Volkmer, L. D. Book, X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J. X. Cheng, L. D. Book, X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

J.- Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

Borri, P.

A. Zumbusch, W. Langbein, P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
[CrossRef] [PubMed]

I. Rocha-Mendoza, W. Langbein, P. Watson, P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett. 34(15), 2258–2260 (2009).
[CrossRef] [PubMed]

I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[CrossRef]

Chamma, E.

Chen, B. C.

B. C. Chen, J. H. Sung, X. X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

B. C. Chen, S. H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

Cheng, J.

Cheng, J.-

J.- Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

Cheng, J. X.

J. X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

J. X. Cheng, L. D. Book, X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

Contreras-Rojas, L. R.

N. A. Belsey, N. L. Garrett, L. R. Contreras-Rojas, A. J. Pickup-Gerlaugh, G. J. Price, J. Moger, R. H. Guy, “Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies,” J. Control. Release 174, 37–42 (2014).
[CrossRef] [PubMed]

Côté, D.

Dantus, M.

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. W. Xu, S. Roy, J. R. Gord, M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42(3), 393–398 (2011).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[CrossRef]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N-2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

De Koninck, Y.

Downes, A.

R. Mouras, P. Bagnaninchi, A. Downes, A. Elfick, “Multimodal, label-free nonlinear optical imaging for applications in biology and biomedical science,” J. Raman Spectrosc. 44(10), 1373–1378 (2013).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Elfick, A.

R. Mouras, P. Bagnaninchi, A. Downes, A. Elfick, “Multimodal, label-free nonlinear optical imaging for applications in biology and biomedical science,” J. Raman Spectrosc. 44(10), 1373–1378 (2013).
[CrossRef]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broadbandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[CrossRef]

Evans, C. L.

Freudiger, C. W.

C. W. Freudiger, W. L. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Garrett, N. L.

N. A. Belsey, N. L. Garrett, L. R. Contreras-Rojas, A. J. Pickup-Gerlaugh, G. J. Price, J. Moger, R. H. Guy, “Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies,” J. Control. Release 174, 37–42 (2014).
[CrossRef] [PubMed]

Gilson, T. R.

T. R. Gilson, J. M. Hollas, E. Khalilipour, J. V. Warrington, “Vibrational Assignments for Styrene-β-D2 from the Infrared and Raman Spectra,” J. Mol. Spectrosc. 73(2), 234–239 (1978).
[CrossRef]

Gord, J. R.

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[CrossRef]

P. J. Wrzesinski, S. Roy, J. R. Gord, “Interference-free coherence dynamics of gas-phase molecules using spectral focusing,” Opt. Express 20(21), 23390–23397 (2012).
[CrossRef] [PubMed]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. W. Xu, S. Roy, J. R. Gord, M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42(3), 393–398 (2011).
[CrossRef]

S. Roy, J. R. Gord, A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[CrossRef]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N-2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

S. Roy, T. R. Meyer, J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

Gross, P.

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[CrossRef] [PubMed]

Gunaratne, T.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N-2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

Guy, R. H.

N. A. Belsey, N. L. Garrett, L. R. Contreras-Rojas, A. J. Pickup-Gerlaugh, G. J. Price, J. Moger, R. H. Guy, “Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies,” J. Control. Release 174, 37–42 (2014).
[CrossRef] [PubMed]

Hamaguchi, H.

H. Kano, H. Hamaguchi, “Ultrabroadband (> 2500 cm(−1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

Hänsch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[CrossRef] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hellerer, T.

T. Hellerer, A. M. K. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broadbandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[CrossRef]

Herek, J. L.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42(10), 1859–1863 (2011).
[CrossRef]

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
[CrossRef] [PubMed]

Hollas, J. M.

T. R. Gilson, J. M. Hollas, E. Khalilipour, J. V. Warrington, “Vibrational Assignments for Styrene-β-D2 from the Infrared and Raman Spectra,” J. Mol. Spectrosc. 73(2), 234–239 (1978).
[CrossRef]

Holtom, G. R.

C. W. Freudiger, W. L. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[CrossRef] [PubMed]

Huang, Z.

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[CrossRef] [PubMed]

Jafarpour, A.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42(10), 1859–1863 (2011).
[CrossRef]

Jia, Y.

Jurna, M.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42(10), 1859–1863 (2011).
[CrossRef]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Kano, H.

H. Kano, H. Hamaguchi, “Ultrabroadband (> 2500 cm(−1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

Keiding, S. R.

Khalilipour, E.

T. R. Gilson, J. M. Hollas, E. Khalilipour, J. V. Warrington, “Vibrational Assignments for Styrene-β-D2 from the Infrared and Raman Spectra,” J. Mol. Spectrosc. 73(2), 234–239 (1978).
[CrossRef]

Kieu, K. Q.

C. W. Freudiger, W. L. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

Kim, J. C.

J. H. Lee, J. C. Kim, G. Tae, M. K. Oh, D. K. Ko, “Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging,” J. Biomed. Opt. 18(7), 076009 (2013).
[CrossRef] [PubMed]

Ko, D. K.

J. H. Lee, J. C. Kim, G. Tae, M. K. Oh, D. K. Ko, “Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging,” J. Biomed. Opt. 18(7), 076009 (2013).
[CrossRef] [PubMed]

Korterik, J. P.

Kulatilaka, W. D.

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[CrossRef]

Lacroix, S.

Laffray, S.

Langbein, W.

A. Zumbusch, W. Langbein, P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
[CrossRef] [PubMed]

I. Rocha-Mendoza, W. Langbein, P. Watson, P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett. 34(15), 2258–2260 (2009).
[CrossRef] [PubMed]

I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[CrossRef]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128-Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[CrossRef]

Lee, J. H.

J. H. Lee, J. C. Kim, G. Tae, M. K. Oh, D. K. Ko, “Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging,” J. Biomed. Opt. 18(7), 076009 (2013).
[CrossRef] [PubMed]

Lim, S. H.

B. C. Chen, J. H. Sung, X. X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

B. C. Chen, S. H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

Liu, Z. F.

Lozovoy, V. V.

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. W. Xu, S. Roy, J. R. Gord, M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42(3), 393–398 (2011).
[CrossRef]

Lu, F.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Lyn, R.

A. Pegoraro, A. Ridsdale, R. Lyn, J. Pezacki, A. Stolow, “Simple High Performance Multi-modal Coherent Anti-Stokes Raman Scattering (CARS) Microscopy Based on a Two-Photon Microscope,” Microsc. Microanal. 14(S2), 758–759 (2008).
[CrossRef]

Mahajan, S.

C. Patel, C. Steuwe, S. Reichelt, S. Mahajan, “Coherent anti-Stokes Raman scattering for label-free biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[CrossRef]

Meyer, T. R.

S. Roy, T. R. Meyer, J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Moffatt, D. J.

Moger, J.

N. A. Belsey, N. L. Garrett, L. R. Contreras-Rojas, A. J. Pickup-Gerlaugh, G. J. Price, J. Moger, R. H. Guy, “Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies,” J. Control. Release 174, 37–42 (2014).
[CrossRef] [PubMed]

Motzkus, M.

B. von Vacano, M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

Mouras, R.

R. Mouras, P. Bagnaninchi, A. Downes, A. Elfick, “Multimodal, label-free nonlinear optical imaging for applications in biology and biomedical science,” J. Raman Spectrosc. 44(10), 1373–1378 (2013).
[CrossRef]

Murawski, R. K.

Noojin, G. D.

Offerhaus, H. L.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42(10), 1859–1863 (2011).
[CrossRef]

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
[CrossRef] [PubMed]

Oh, M. K.

J. H. Lee, J. C. Kim, G. Tae, M. K. Oh, D. K. Ko, “Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging,” J. Biomed. Opt. 18(7), 076009 (2013).
[CrossRef] [PubMed]

Oron, D.

N. Dudovich, D. Oron, Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Patel, C.

C. Patel, C. Steuwe, S. Reichelt, S. Mahajan, “Coherent anti-Stokes Raman scattering for label-free biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[CrossRef]

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128-Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[CrossRef]

Patnaik, A. K.

S. Roy, J. R. Gord, A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
[CrossRef]

Paulsen, H. N.

Pegoraro, A.

A. Pegoraro, A. Ridsdale, R. Lyn, J. Pezacki, A. Stolow, “Simple High Performance Multi-modal Coherent Anti-Stokes Raman Scattering (CARS) Microscopy Based on a Two-Photon Microscope,” Microsc. Microanal. 14(S2), 758–759 (2008).
[CrossRef]

Pegoraro, A. F.

Pestov, D.

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. W. Xu, S. Roy, J. R. Gord, M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42(3), 393–398 (2011).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[CrossRef]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N-2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

D. Pestov, X. Wang, R. K. Murawski, G. O. Ariunbold, V. A. Sautenkov, A. V. Sokolov, “Pulse shaping for mode-selective ultrafast coherent Raman spectroscopy of highly scattering solids,” J. Opt. Soc. Am. B 25(5), 768–772 (2008).
[CrossRef]

Peyghambarian, N.

C. W. Freudiger, W. L. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

Pezacki, J.

A. Pegoraro, A. Ridsdale, R. Lyn, J. Pezacki, A. Stolow, “Simple High Performance Multi-modal Coherent Anti-Stokes Raman Scattering (CARS) Microscopy Based on a Two-Photon Microscope,” Microsc. Microanal. 14(S2), 758–759 (2008).
[CrossRef]

Pezacki, J. P.

Pickup-Gerlaugh, A. J.

N. A. Belsey, N. L. Garrett, L. R. Contreras-Rojas, A. J. Pickup-Gerlaugh, G. J. Price, J. Moger, R. H. Guy, “Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies,” J. Control. Release 174, 37–42 (2014).
[CrossRef] [PubMed]

Picqué, N.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[CrossRef] [PubMed]

Postma, S.

Potma, E. O.

Price, G. J.

N. A. Belsey, N. L. Garrett, L. R. Contreras-Rojas, A. J. Pickup-Gerlaugh, G. J. Price, J. Moger, R. H. Guy, “Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies,” J. Control. Release 174, 37–42 (2014).
[CrossRef] [PubMed]

Reichelt, S.

C. Patel, C. Steuwe, S. Reichelt, S. Mahajan, “Coherent anti-Stokes Raman scattering for label-free biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[CrossRef]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Ridsdale, A.

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[CrossRef] [PubMed]

A. Pegoraro, A. Ridsdale, R. Lyn, J. Pezacki, A. Stolow, “Simple High Performance Multi-modal Coherent Anti-Stokes Raman Scattering (CARS) Microscopy Based on a Two-Photon Microscope,” Microsc. Microanal. 14(S2), 758–759 (2008).
[CrossRef]

Rocha-Mendoza, I.

I. Rocha-Mendoza, W. Langbein, P. Watson, P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett. 34(15), 2258–2260 (2009).
[CrossRef] [PubMed]

I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[CrossRef]

Rockwell, B. A.

Roy, S.

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[CrossRef]

P. J. Wrzesinski, S. Roy, J. R. Gord, “Interference-free coherence dynamics of gas-phase molecules using spectral focusing,” Opt. Express 20(21), 23390–23397 (2012).
[CrossRef] [PubMed]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. W. Xu, S. Roy, J. R. Gord, M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42(3), 393–398 (2011).
[CrossRef]

S. Roy, J. R. Gord, A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[CrossRef]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N-2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

S. Roy, T. R. Meyer, J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Sautenkov, V. A.

Sheppard, C.

Silberberg, Y.

N. Dudovich, D. Oron, Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Sokolov, A. V.

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Stauffer, H. U.

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[CrossRef]

Steuwe, C.

C. Patel, C. Steuwe, S. Reichelt, S. Mahajan, “Coherent anti-Stokes Raman scattering for label-free biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[CrossRef]

Stolow, A.

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[CrossRef] [PubMed]

A. Pegoraro, A. Ridsdale, R. Lyn, J. Pezacki, A. Stolow, “Simple High Performance Multi-modal Coherent Anti-Stokes Raman Scattering (CARS) Microscopy Based on a Two-Photon Microscope,” Microsc. Microanal. 14(S2), 758–759 (2008).
[CrossRef]

Sung, J. H.

B. C. Chen, J. H. Sung, X. X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

Tae, G.

J. H. Lee, J. C. Kim, G. Tae, M. K. Oh, D. K. Ko, “Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging,” J. Biomed. Opt. 18(7), 076009 (2013).
[CrossRef] [PubMed]

Thøgersen, J.

Thrall, M. J.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

van Rhijn, A. C. W.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42(10), 1859–1863 (2011).
[CrossRef]

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
[CrossRef] [PubMed]

Volkmer, A.

A. Volkmer, L. D. Book, X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J.- Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

von Vacano, B.

B. von Vacano, M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

Wang, X.

Warrington, J. V.

T. R. Gilson, J. M. Hollas, E. Khalilipour, J. V. Warrington, “Vibrational Assignments for Styrene-β-D2 from the Infrared and Raman Spectra,” J. Mol. Spectrosc. 73(2), 234–239 (1978).
[CrossRef]

Watson, P.

Weiner, A. M.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128-Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[CrossRef]

Wong, S. T. C.

Wrzesinski, P.

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N-2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

Wrzesinski, P. J.

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[CrossRef]

P. J. Wrzesinski, S. Roy, J. R. Gord, “Interference-free coherence dynamics of gas-phase molecules using spectral focusing,” Opt. Express 20(21), 23390–23397 (2012).
[CrossRef] [PubMed]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. W. Xu, S. Roy, J. R. Gord, M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42(3), 393–398 (2011).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[CrossRef]

Wu, X. X.

B. C. Chen, J. H. Sung, X. X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128-Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[CrossRef]

Xie, X. S.

C. W. Freudiger, W. L. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[CrossRef] [PubMed]

J. X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

A. Volkmer, L. D. Book, X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J. X. Cheng, L. D. Book, X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

J.- Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

Xu, B. W.

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. W. Xu, S. Roy, J. R. Gord, M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42(3), 393–398 (2011).
[CrossRef]

Xu, X. Y.

Yang, W. L.

C. W. Freudiger, W. L. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

Zheng, W.

Zumbusch, A.

A. Zumbusch, W. Langbein, P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
[CrossRef] [PubMed]

T. Hellerer, A. M. K. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broadbandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[CrossRef]

Appl. Phys. Lett. (6)

A. Volkmer, L. D. Book, X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

H. Kano, H. Hamaguchi, “Ultrabroadband (> 2500 cm(−1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

S. Roy, T. R. Meyer, J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[CrossRef]

T. Hellerer, A. M. K. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broadbandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[CrossRef]

I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[CrossRef]

S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N-2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95(7), 074102 (2009).
[CrossRef]

Biomed. Opt. Express (2)

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128-Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[CrossRef]

J. Biomed. Opt. (2)

J. H. Lee, J. C. Kim, G. Tae, M. K. Oh, D. K. Ko, “Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging,” J. Biomed. Opt. 18(7), 076009 (2013).
[CrossRef] [PubMed]

B. C. Chen, J. H. Sung, X. X. Wu, S. H. Lim, “Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 16(2), 021112 (2011).
[CrossRef] [PubMed]

J. Control. Release (1)

N. A. Belsey, N. L. Garrett, L. R. Contreras-Rojas, A. J. Pickup-Gerlaugh, G. J. Price, J. Moger, R. H. Guy, “Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies,” J. Control. Release 174, 37–42 (2014).
[CrossRef] [PubMed]

J. Mol. Spectrosc. (1)

T. R. Gilson, J. M. Hollas, E. Khalilipour, J. V. Warrington, “Vibrational Assignments for Styrene-β-D2 from the Infrared and Raman Spectra,” J. Mol. Spectrosc. 73(2), 234–239 (1978).
[CrossRef]

J. Opt. (1)

C. Patel, C. Steuwe, S. Reichelt, S. Mahajan, “Coherent anti-Stokes Raman scattering for label-free biomedical imaging,” J. Opt. 15(9), 094006 (2013).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (3)

J.- Cheng, A. Volkmer, L. D. Book, X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

B. C. Chen, S. H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

J. X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

J. Raman Spectrosc. (5)

R. Mouras, P. Bagnaninchi, A. Downes, A. Elfick, “Multimodal, label-free nonlinear optical imaging for applications in biology and biomedical science,” J. Raman Spectrosc. 44(10), 1373–1378 (2013).
[CrossRef]

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, H. L. Offerhaus, “Phase-shaping strategies for coherent anti-Stokes Raman scattering,” J. Raman Spectrosc. 42(10), 1859–1863 (2011).
[CrossRef]

P. J. Wrzesinski, D. Pestov, V. V. Lozovoy, B. W. Xu, S. Roy, J. R. Gord, M. Dantus, “Binary phase shaping for selective single-beam CARS spectroscopy and imaging of gas-phase molecules,” J. Raman Spectrosc. 42(3), 393–398 (2011).
[CrossRef]

P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, S. Roy, “Time-resolved femtosecond CARS from 10 to 50 Bar: collisional sensitivity,” J. Raman Spectrosc. 44(10), 1344–1348 (2013).
[CrossRef]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[CrossRef]

Microsc. Microanal. (1)

A. Pegoraro, A. Ridsdale, R. Lyn, J. Pezacki, A. Stolow, “Simple High Performance Multi-modal Coherent Anti-Stokes Raman Scattering (CARS) Microscopy Based on a Two-Photon Microscope,” Microsc. Microanal. 14(S2), 758–759 (2008).
[CrossRef]

Nat. Photonics (1)

C. W. Freudiger, W. L. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

Nature (2)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Phys. Chem. Chem. Phys. (1)

B. von Vacano, M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

Prog. Energ. Combust. (1)

S. Roy, J. R. Gord, A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. 36(2), 280–306 (2010).
[CrossRef]

Prog. Lipid Res. (1)

A. Zumbusch, W. Langbein, P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Prog. Lipid Res. 52(4), 615–632 (2013).
[CrossRef] [PubMed]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Other (2)

Y. Silberberg, “Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy,” in Annu. Rev. Phys. Chem.(2009), pp. 277–292.

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Energy diagram of CARS at Raman resonance. (b) Excitation pulses in T-CARS. (c) Excitation pulses in two-beam spectral focusing CARS. (d) Excitation pulses in our CT-CARS design.

Fig. 2
Fig. 2

(a) Calculated frequency slope vs. linear chirp factor α for the 120-fs pump and 220-fs Stokes pulses in our setup, assuming Gaussian pulse profile. Chirp matching is only possible if α for the pump is smaller than 0.155 (practically useless) or larger than 6.57. (b) Calculated R/NR vs. chirped pulse duration for spectral focusing CARS with 120-fs TL pump and Stokes pulses. The Raman band FWHM is 8.7 cm−1, and ωp − ωs is at resonance. |χRNR| is set to 3. A different χRNR value only applies a multiplication factor to the curve.

Fig. 3
Fig. 3

Laser setup of the CT-CARS microscope. BS- beamsplitter, G- grating, DM- Dichroic mirror, L- plano-convex lens, ZnSe- ZnSe window.

Fig. 4
Fig. 4

(a) Cross-correlation trace between the probe pulse and the chirped pump pulse. (b) Cross-correlation trace between the probe pulse and the shaped Stokes pulse.

Fig. 5
Fig. 5

Conventional T-CARS imaging results with TL excitations. The powers of pump, Stokes, and probe beams before the microscope objective were 3.1 mW, 0.96 mW, and 2.5 mW, respectively. (a) Raman spectrum of polystyrene in the 900 –- 1250 cm−1 region. (b) CARS signals of polystyrene beads and water vs. probe pulse delay. The curve fitting function was Aexp(-τ/Γ){B + sin[2π(τ − τ0)/Τ]} + C. (c) CARS image of polystyrene beads in water at τ = 0 fs and the intensity profile along the line in the image. (d) CARS image of polystyrene beads in water at τ = 500 fs and the intensity profile along the line in the image. The PMT gain was normalized for the line profiles in (c) and (d).

Fig. 6
Fig. 6

CT-CARS imaging results with chirped pump pulses and chirped square Stokes pulses. The powers of the pump, Stokes, and probe beams before the microscope objective were 5.3 mW, 0.96 mW and 3.0 mW, respectively. (a) CARS signals of polystyrene and water vs. pump delay when the probe pulses were delayed by 250 fs from the falling edge of square pulses. (b) CARS signals of polystyrene and water vs. probe delay for the 1005-cm−1 Raman band delay when the pump delay was 333 fs. The fitting function was Aexp(-τ/Γ) + C. (c) CARS signals of polystyrene and water vs. probe delay for the 1035-cm−1 Raman band when the pump delay was −200 fs. The fitting function was Aexp(-τ/Γ){B + sin[2π(τ − τ0)/Τ]} + C. (d) CARS image and line profile of polystyrene beads in water for the 1005-cm−1 band at τ = 250 fs and the intensity profile along the line in the image. (e) CARS image and line profile for the 1005-cm−1 band at τ = 750 fs. (f) CARS image and line profile for the 1035-cm−1 band at τ = 625 fs. The PMT gain was normalized for the line profiles in (d), (e), and (f) to be the same as those for Figs. 5(c) and 5(d).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E(t)=Aexp( (2ln2) t 2 t 0 2 (1+ α 2 ) )exp( i (2ln2)α t 2 t 0 2 (1+ α 2 ) )exp( i ω 0 t )
E(ω)= A exp( (ω ω 0 ) 2 t 0 2 4 (1+iα) ) ,
dω dt = (2ln2)α t 0 2 (1+ α 2 )

Metrics