Abstract

We demonstrate the generation of two-photon correlation trains based on spectral filtering of broadband biphotons. Programmable amplitude filtering is employed to create biphoton frequency combs, which when coupled with optical dispersion allows us to experimentally verify the temporal Talbot effect for entangled photons. Additionally, an alternative spectral phase-filtering approach is shown to significantly improve the overall efficiency of the generation process when a comb-like spectrum is not required. Our technique is ideal for the creation of tunable and high-repetition-rate biphoton states.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Perina, “Characterization of a resonator using entangled two-photon states,” Opt. Commun. 221, 153–161 (2003).
    [CrossRef]
  2. Y. J. Lu, R. L. Campbell, Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
    [CrossRef] [PubMed]
  3. H. Goto, Y. Yanagihara, H. Wang, T. Horikiri, T. Kobayashi, “Observation of an oscillatory correlation function of multimode two-photon pairs,” Phys. Rev. A 68, 015803 (2003).
    [CrossRef]
  4. H. Goto, H. Wang, T. Horikiri, Y. Yanagihara, T. Kobayashi, “Two-photon interference of multimode two-photon pairs with an unbalanced interferometer,” Phys. Rev. A 69, 035801 (2004).
    [CrossRef]
  5. H. Wang, T. Horikiri, T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
    [CrossRef]
  6. H.-b. Wang, T. Kobayashi, “Quantum interference of a mode-locked two-photon state,” Phys. Rev. A 70, 053816 (2004).
    [CrossRef]
  7. M. A. Sagioro, C. Olindo, C. H. Monken, S. Pádua, “Time control of two-photon interference,” Phys. Rev. A 69, 053817 (2004).
    [CrossRef]
  8. A. Zavatta, S. Viciani, M. Bellini, “Recurrent fourth-order interference dips and peaks with a comblike two-photon entangled state,” Phys. Rev. A 70, 023806 (2004).
    [CrossRef]
  9. F.-Y. Wang, B.-S. Shi, G.-C. Guo, “Observation of time correlation function of multimode two-photon pairs on a rubidium D2 line,” Opt. Lett. 33, 2191–2193 (2008).
    [CrossRef] [PubMed]
  10. W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455 (2012).
  11. A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature 398, 189–190 (1999).
    [CrossRef]
  12. N. Gisin, R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007).
    [CrossRef]
  13. T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [CrossRef] [PubMed]
  14. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nature Photon. 5, 186–188 (2011).
    [CrossRef]
  15. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
    [CrossRef] [PubMed]
  16. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
    [CrossRef] [PubMed]
  17. Y. J. Lu, Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
    [CrossRef]
  18. V. Torres-Company, J. Lancis, H. Lajunen, A. T. Friberg, “Coherence revivals in two-photon frequency combs,” Phys. Rev. A 84, 033830 (2011).
    [CrossRef]
  19. T. Jannson, J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. 71, 1373–1376 (1981).
  20. V. Torres-Company, J. Lancis, P. Andrés, “Space-time analogies in optics,” in Progress in Optics, E. Wolf, ed. vol. 56, 1–80 (Elsevier, 2011).
    [CrossRef]
  21. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  22. A. M. Weiner, Ultrafast Optics (Wiley, Hoboken, NJ, 2009).
    [CrossRef]
  23. A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
    [CrossRef]
  24. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).
    [CrossRef]
  25. Y. Shih, “Entangled biphoton source - property and preparation,” Rep. Prog. Phys. 66, 1009 (2003).
    [CrossRef]
  26. B. Dayan, A. Pe’er, A. A. Friesem, Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
    [CrossRef] [PubMed]
  27. A. Pe’er, B. Dayan, A. A. Friesem, Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
    [CrossRef]
  28. F. Zäh, M. Halder, T. Feurer, “Amplitude and phase modulation of time-energy entangled two-photon states,” Opt. Express 16, 16452–16458 (2008).
    [CrossRef] [PubMed]
  29. K. A. O’Donnell, A. B. U’Ren, “Time-resolved up-conversion of entangled photon pairs,” Phys. Rev. Lett. 103, 123602 (2009).
    [CrossRef]
  30. S. Sensarn, G. Y. Yin, S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
    [CrossRef] [PubMed]
  31. K. A. O’Donnell, “Observations of dispersion cancellation of entangled photon pairs,” Phys. Rev. Lett. 106, 063601 (2011).
    [CrossRef]
  32. J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner, “Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator,” Phys. Rev. Lett. 111, 193603 (2013).
    [CrossRef] [PubMed]
  33. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
    [CrossRef]
  34. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579 (2006).
    [CrossRef]
  35. A. M. Weiner, D. E. Leaird, “Generation of terahertz-rate trains of femtosecond pulses by phase-only filtering,” Opt. Lett. 15, 51–53 (1990).
    [CrossRef] [PubMed]
  36. H. Talbot, “Facts relating to optical science.” Philos. Mag. Ser. 3 9, 401–407 (1836).
  37. K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf, ed., vol. 27, 1–108 (Elsevier, 1989).
    [CrossRef]
  38. J. Wen, Y. Zhang, M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photon. 5, 83–130 (2013).
    [CrossRef]
  39. K.-H. Luo, J. Wen, X.-H. Chen, Q. Liu, M. Xiao, L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009).
    [CrossRef]
  40. X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
    [CrossRef] [PubMed]
  41. B. H. Kolner, M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989).
    [CrossRef] [PubMed]
  42. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
    [CrossRef]
  43. T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
    [CrossRef]
  44. V. Torres-Company, J. Lancis, P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33, 1822–1824 (2008).
    [CrossRef] [PubMed]
  45. J. Azaña, M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672–1674 (1999).
    [CrossRef]
  46. J. Azaña, M. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
    [CrossRef]
  47. J. Caraquitena, Z. Jiang, D. E. Leaird, A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32, 716–718 (2007).
    [CrossRef] [PubMed]
  48. J. M. Lukens, D. E. Leaird, A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
    [CrossRef] [PubMed]
  49. J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
    [CrossRef] [PubMed]
  50. I. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25, 97–103 (1989).
    [CrossRef]
  51. P. Petropoulos, M. Ibsen, M. N. Zervas, D. J. Richardson, “Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating,” Opt. Lett. 25, 521–523 (2000).
    [CrossRef]
  52. K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, G. Guekos, “Rate multiplication by double-passing Fabry-Perot filtering,” IEEE Photon. Technol. Lett. 15, 1294–1296 (2003).
    [CrossRef]
  53. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
    [CrossRef] [PubMed]
  54. M. R. Schroeder, Number Theory in Science and Communication (Springer-Verlag, Berlin, 1986).
    [CrossRef]

2013 (3)

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner, “Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator,” Phys. Rev. Lett. 111, 193603 (2013).
[CrossRef] [PubMed]

J. Wen, Y. Zhang, M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photon. 5, 83–130 (2013).
[CrossRef]

J. M. Lukens, D. E. Leaird, A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[CrossRef] [PubMed]

2012 (1)

2011 (5)

V. Torres-Company, J. Lancis, H. Lajunen, A. T. Friberg, “Coherence revivals in two-photon frequency combs,” Phys. Rev. A 84, 033830 (2011).
[CrossRef]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nature Photon. 5, 186–188 (2011).
[CrossRef]

X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[CrossRef] [PubMed]

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[CrossRef]

K. A. O’Donnell, “Observations of dispersion cancellation of entangled photon pairs,” Phys. Rev. Lett. 106, 063601 (2011).
[CrossRef]

2010 (1)

S. Sensarn, G. Y. Yin, S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
[CrossRef] [PubMed]

2009 (3)

K. A. O’Donnell, A. B. U’Ren, “Time-resolved up-conversion of entangled photon pairs,” Phys. Rev. Lett. 103, 123602 (2009).
[CrossRef]

K.-H. Luo, J. Wen, X.-H. Chen, Q. Liu, M. Xiao, L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009).
[CrossRef]

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (3)

T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
[CrossRef]

J. Caraquitena, Z. Jiang, D. E. Leaird, A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32, 716–718 (2007).
[CrossRef] [PubMed]

N. Gisin, R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007).
[CrossRef]

2006 (1)

2005 (2)

B. Dayan, A. Pe’er, A. A. Friesem, Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef] [PubMed]

A. Pe’er, B. Dayan, A. A. Friesem, Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

2004 (5)

H. Goto, H. Wang, T. Horikiri, Y. Yanagihara, T. Kobayashi, “Two-photon interference of multimode two-photon pairs with an unbalanced interferometer,” Phys. Rev. A 69, 035801 (2004).
[CrossRef]

H. Wang, T. Horikiri, T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[CrossRef]

H.-b. Wang, T. Kobayashi, “Quantum interference of a mode-locked two-photon state,” Phys. Rev. A 70, 053816 (2004).
[CrossRef]

M. A. Sagioro, C. Olindo, C. H. Monken, S. Pádua, “Time control of two-photon interference,” Phys. Rev. A 69, 053817 (2004).
[CrossRef]

A. Zavatta, S. Viciani, M. Bellini, “Recurrent fourth-order interference dips and peaks with a comblike two-photon entangled state,” Phys. Rev. A 70, 023806 (2004).
[CrossRef]

2003 (5)

J. Perina, “Characterization of a resonator using entangled two-photon states,” Opt. Commun. 221, 153–161 (2003).
[CrossRef]

Y. J. Lu, R. L. Campbell, Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
[CrossRef] [PubMed]

H. Goto, Y. Yanagihara, H. Wang, T. Horikiri, T. Kobayashi, “Observation of an oscillatory correlation function of multimode two-photon pairs,” Phys. Rev. A 68, 015803 (2003).
[CrossRef]

Y. Shih, “Entangled biphoton source - property and preparation,” Rep. Prog. Phys. 66, 1009 (2003).
[CrossRef]

K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, G. Guekos, “Rate multiplication by double-passing Fabry-Perot filtering,” IEEE Photon. Technol. Lett. 15, 1294–1296 (2003).
[CrossRef]

2002 (2)

2001 (1)

J. Azaña, M. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[CrossRef]

2000 (3)

P. Petropoulos, M. Ibsen, M. N. Zervas, D. J. Richardson, “Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating,” Opt. Lett. 25, 521–523 (2000).
[CrossRef]

Y. J. Lu, Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

1999 (2)

1994 (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[CrossRef]

1992 (1)

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef] [PubMed]

1990 (2)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, “Generation of terahertz-rate trains of femtosecond pulses by phase-only filtering,” Opt. Lett. 15, 51–53 (1990).
[CrossRef] [PubMed]

1989 (2)

B. H. Kolner, M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989).
[CrossRef] [PubMed]

I. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25, 97–103 (1989).
[CrossRef]

1981 (1)

1836 (1)

H. Talbot, “Facts relating to optical science.” Philos. Mag. Ser. 3 9, 401–407 (1836).

Andrés, P.

V. Torres-Company, J. Lancis, P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33, 1822–1824 (2008).
[CrossRef] [PubMed]

V. Torres-Company, J. Lancis, P. Andrés, “Space-time analogies in optics,” in Progress in Optics, E. Wolf, ed. vol. 56, 1–80 (Elsevier, 2011).
[CrossRef]

Aspect, A.

A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature 398, 189–190 (1999).
[CrossRef]

Avramopoulos, H.

K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, G. Guekos, “Rate multiplication by double-passing Fabry-Perot filtering,” IEEE Photon. Technol. Lett. 15, 1294–1296 (2003).
[CrossRef]

Azaña, J.

J. Azaña, M. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[CrossRef]

J. Azaña, M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672–1674 (1999).
[CrossRef]

Azzini, S.

Baets, R. G.

Bajoni, D.

Bellini, M.

A. Zavatta, S. Viciani, M. Bellini, “Recurrent fourth-order interference dips and peaks with a comblike two-photon entangled state,” Phys. Rev. A 70, 023806 (2004).
[CrossRef]

Bogaerts, W.

Campbell, R. L.

Y. J. Lu, R. L. Campbell, Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
[CrossRef] [PubMed]

Caraquitena, J.

Chen, X.-H.

K.-H. Luo, J. Wen, X.-H. Chen, Q. Liu, M. Xiao, L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009).
[CrossRef]

Clemmen, S.

Dayan, B.

B. Dayan, A. Pe’er, A. A. Friesem, Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef] [PubMed]

A. Pe’er, B. Dayan, A. A. Friesem, Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

Dezfooliyan, A.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner, “Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator,” Phys. Rev. Lett. 111, 193603 (2013).
[CrossRef] [PubMed]

Emplit, P.

Fejer, M. M.

Feurer, T.

Franson, J. D.

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef] [PubMed]

Friberg, A. T.

V. Torres-Company, J. Lancis, H. Lajunen, A. T. Friberg, “Coherence revivals in two-photon frequency combs,” Phys. Rev. A 84, 033830 (2011).
[CrossRef]

Friesem, A. A.

A. Pe’er, B. Dayan, A. A. Friesem, Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem, Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef] [PubMed]

Fujimura, M.

Galli, M.

Gisin, N.

N. Gisin, R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007).
[CrossRef]

Goto, H.

H. Goto, H. Wang, T. Horikiri, Y. Yanagihara, T. Kobayashi, “Two-photon interference of multimode two-photon pairs with an unbalanced interferometer,” Phys. Rev. A 69, 035801 (2004).
[CrossRef]

H. Goto, Y. Yanagihara, H. Wang, T. Horikiri, T. Kobayashi, “Observation of an oscillatory correlation function of multimode two-photon pairs,” Phys. Rev. A 68, 015803 (2003).
[CrossRef]

Grassani, D.

Guekos, G.

K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, G. Guekos, “Rate multiplication by double-passing Fabry-Perot filtering,” IEEE Photon. Technol. Lett. 15, 1294–1296 (2003).
[CrossRef]

Guo, G.-C.

Halder, M.

Hänsch, T. W.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Harris, S. E.

S. Sensarn, G. Y. Yin, S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
[CrossRef] [PubMed]

Helt, L. G.

Holzwarth, R.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Horikiri, T.

H. Goto, H. Wang, T. Horikiri, Y. Yanagihara, T. Kobayashi, “Two-photon interference of multimode two-photon pairs with an unbalanced interferometer,” Phys. Rev. A 69, 035801 (2004).
[CrossRef]

H. Wang, T. Horikiri, T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[CrossRef]

H. Goto, Y. Yanagihara, H. Wang, T. Horikiri, T. Kobayashi, “Observation of an oscillatory correlation function of multimode two-photon pairs,” Phys. Rev. A 68, 015803 (2003).
[CrossRef]

Huy, K. P.

Ibsen, M.

Jannson, J.

Jannson, T.

Jiang, W. C.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455 (2012).

Jiang, Z.

Kehayas, E.

K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, G. Guekos, “Rate multiplication by double-passing Fabry-Perot filtering,” IEEE Photon. Technol. Lett. 15, 1294–1296 (2003).
[CrossRef]

Kobayashi, T.

H.-b. Wang, T. Kobayashi, “Quantum interference of a mode-locked two-photon state,” Phys. Rev. A 70, 053816 (2004).
[CrossRef]

H. Wang, T. Horikiri, T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[CrossRef]

H. Goto, H. Wang, T. Horikiri, Y. Yanagihara, T. Kobayashi, “Two-photon interference of multimode two-photon pairs with an unbalanced interferometer,” Phys. Rev. A 69, 035801 (2004).
[CrossRef]

H. Goto, Y. Yanagihara, H. Wang, T. Horikiri, T. Kobayashi, “Observation of an oscillatory correlation function of multimode two-photon pairs,” Phys. Rev. A 68, 015803 (2003).
[CrossRef]

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[CrossRef]

B. H. Kolner, M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989).
[CrossRef] [PubMed]

Komukai, T.

T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
[CrossRef]

Kumar, S.

Kurz, J. R.

Lajunen, H.

V. Torres-Company, J. Lancis, H. Lajunen, A. T. Friberg, “Coherence revivals in two-photon frequency combs,” Phys. Rev. A 84, 033830 (2011).
[CrossRef]

Lancis, J.

V. Torres-Company, J. Lancis, H. Lajunen, A. T. Friberg, “Coherence revivals in two-photon frequency combs,” Phys. Rev. A 84, 033830 (2011).
[CrossRef]

V. Torres-Company, J. Lancis, P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33, 1822–1824 (2008).
[CrossRef] [PubMed]

V. Torres-Company, J. Lancis, P. Andrés, “Space-time analogies in optics,” in Progress in Optics, E. Wolf, ed. vol. 56, 1–80 (Elsevier, 2011).
[CrossRef]

Langrock, C.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner, “Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator,” Phys. Rev. Lett. 111, 193603 (2013).
[CrossRef] [PubMed]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579 (2006).
[CrossRef]

Leaird, D. E.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner, “Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator,” Phys. Rev. Lett. 111, 193603 (2013).
[CrossRef] [PubMed]

J. M. Lukens, D. E. Leaird, A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[CrossRef] [PubMed]

J. Caraquitena, Z. Jiang, D. E. Leaird, A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32, 716–718 (2007).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, “Generation of terahertz-rate trains of femtosecond pulses by phase-only filtering,” Opt. Lett. 15, 51–53 (1990).
[CrossRef] [PubMed]

Lin, Q.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455 (2012).

Liscidini, M.

Liu, Q.

K.-H. Luo, J. Wen, X.-H. Chen, Q. Liu, M. Xiao, L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009).
[CrossRef]

Lu, X.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455 (2012).

Lu, Y. J.

Y. J. Lu, R. L. Campbell, Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
[CrossRef] [PubMed]

Y. J. Lu, Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

Lukens, J. M.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner, “Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator,” Phys. Rev. Lett. 111, 193603 (2013).
[CrossRef] [PubMed]

J. M. Lukens, D. E. Leaird, A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[CrossRef] [PubMed]

Luo, K.-H.

X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[CrossRef] [PubMed]

K.-H. Luo, J. Wen, X.-H. Chen, Q. Liu, M. Xiao, L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009).
[CrossRef]

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).
[CrossRef]

Massar, S.

McGeehan, J. E.

Monken, C. H.

M. A. Sagioro, C. Olindo, C. H. Monken, S. Pádua, “Time control of two-photon interference,” Phys. Rev. A 69, 053817 (2004).
[CrossRef]

Muriel, M.

J. Azaña, M. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[CrossRef]

Muriel, M. A.

Nazarathy, M.

Nelson, K. A.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nature Photon. 5, 186–188 (2011).
[CrossRef]

O’Donnell, K. A.

K. A. O’Donnell, “Observations of dispersion cancellation of entangled photon pairs,” Phys. Rev. Lett. 106, 063601 (2011).
[CrossRef]

K. A. O’Donnell, A. B. U’Ren, “Time-resolved up-conversion of entangled photon pairs,” Phys. Rev. Lett. 103, 123602 (2009).
[CrossRef]

Olindo, C.

M. A. Sagioro, C. Olindo, C. H. Monken, S. Pádua, “Time control of two-photon interference,” Phys. Rev. A 69, 053817 (2004).
[CrossRef]

Ou, Z. Y.

Y. J. Lu, R. L. Campbell, Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
[CrossRef] [PubMed]

Y. J. Lu, Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

Pádua, S.

M. A. Sagioro, C. Olindo, C. H. Monken, S. Pádua, “Time control of two-photon interference,” Phys. Rev. A 69, 053817 (2004).
[CrossRef]

Painter, O.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455 (2012).

Parameswaran, K. R.

Patorski, K.

K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf, ed., vol. 27, 1–108 (Elsevier, 1989).
[CrossRef]

Pe’er, A.

A. Pe’er, B. Dayan, A. A. Friesem, Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

B. Dayan, A. Pe’er, A. A. Friesem, Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef] [PubMed]

Perina, J.

J. Perina, “Characterization of a resonator using entangled two-photon states,” Opt. Commun. 221, 153–161 (2003).
[CrossRef]

Petropoulos, P.

Pleros, N.

K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, G. Guekos, “Rate multiplication by double-passing Fabry-Perot filtering,” IEEE Photon. Technol. Lett. 15, 1294–1296 (2003).
[CrossRef]

Richardson, D. J.

Roussev, R. V.

Route, R. K.

Sagioro, M. A.

M. A. Sagioro, C. Olindo, C. H. Monken, S. Pádua, “Time control of two-photon interference,” Phys. Rev. A 69, 053817 (2004).
[CrossRef]

Schroeder, M. R.

M. R. Schroeder, Number Theory in Science and Communication (Springer-Verlag, Berlin, 1986).
[CrossRef]

Sensarn, S.

S. Sensarn, G. Y. Yin, S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
[CrossRef] [PubMed]

Shi, B.-S.

Shih, Y.

Y. Shih, “Entangled biphoton source - property and preparation,” Rep. Prog. Phys. 66, 1009 (2003).
[CrossRef]

Silberberg, Y.

B. Dayan, A. Pe’er, A. A. Friesem, Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef] [PubMed]

A. Pe’er, B. Dayan, A. A. Friesem, Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

Sipe, J. E.

Sizer, I.

I. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25, 97–103 (1989).
[CrossRef]

Song, X.-B.

X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[CrossRef] [PubMed]

Sorel, M.

Strain, M. J.

Suzuki, K.

T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
[CrossRef]

Takada, A.

T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
[CrossRef]

Talbot, H.

H. Talbot, “Facts relating to optical science.” Philos. Mag. Ser. 3 9, 401–407 (1836).

Thew, R.

N. Gisin, R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007).
[CrossRef]

Torres-Company, V.

V. Torres-Company, J. Lancis, H. Lajunen, A. T. Friberg, “Coherence revivals in two-photon frequency combs,” Phys. Rev. A 84, 033830 (2011).
[CrossRef]

V. Torres-Company, J. Lancis, P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33, 1822–1824 (2008).
[CrossRef] [PubMed]

V. Torres-Company, J. Lancis, P. Andrés, “Space-time analogies in optics,” in Progress in Optics, E. Wolf, ed. vol. 56, 1–80 (Elsevier, 2011).
[CrossRef]

U’Ren, A. B.

K. A. O’Donnell, A. B. U’Ren, “Time-resolved up-conversion of entangled photon pairs,” Phys. Rev. Lett. 103, 123602 (2009).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Viciani, S.

A. Zavatta, S. Viciani, M. Bellini, “Recurrent fourth-order interference dips and peaks with a comblike two-photon entangled state,” Phys. Rev. A 70, 023806 (2004).
[CrossRef]

Vlachos, K.

K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, G. Guekos, “Rate multiplication by double-passing Fabry-Perot filtering,” IEEE Photon. Technol. Lett. 15, 1294–1296 (2003).
[CrossRef]

Vyrsokinos, K.

K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, G. Guekos, “Rate multiplication by double-passing Fabry-Perot filtering,” IEEE Photon. Technol. Lett. 15, 1294–1296 (2003).
[CrossRef]

Wang, F.-Y.

Wang, H.

H. Wang, T. Horikiri, T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[CrossRef]

H. Goto, H. Wang, T. Horikiri, Y. Yanagihara, T. Kobayashi, “Two-photon interference of multimode two-photon pairs with an unbalanced interferometer,” Phys. Rev. A 69, 035801 (2004).
[CrossRef]

H. Goto, Y. Yanagihara, H. Wang, T. Horikiri, T. Kobayashi, “Observation of an oscillatory correlation function of multimode two-photon pairs,” Phys. Rev. A 68, 015803 (2003).
[CrossRef]

Wang, H.-B.

X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[CrossRef] [PubMed]

H.-b. Wang, T. Kobayashi, “Quantum interference of a mode-locked two-photon state,” Phys. Rev. A 70, 053816 (2004).
[CrossRef]

Wang, K.

X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[CrossRef] [PubMed]

Weiner, A. M.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner, “Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator,” Phys. Rev. Lett. 111, 193603 (2013).
[CrossRef] [PubMed]

J. M. Lukens, D. E. Leaird, A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[CrossRef] [PubMed]

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[CrossRef]

J. Caraquitena, Z. Jiang, D. E. Leaird, A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32, 716–718 (2007).
[CrossRef] [PubMed]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

A. M. Weiner, D. E. Leaird, “Generation of terahertz-rate trains of femtosecond pulses by phase-only filtering,” Opt. Lett. 15, 51–53 (1990).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

A. M. Weiner, Ultrafast Optics (Wiley, Hoboken, NJ, 2009).
[CrossRef]

Wen, J.

J. Wen, Y. Zhang, M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photon. 5, 83–130 (2013).
[CrossRef]

K.-H. Luo, J. Wen, X.-H. Chen, Q. Liu, M. Xiao, L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009).
[CrossRef]

Wiederrecht, G. P.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

Willner, A. E.

Wolf, E.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).
[CrossRef]

Wu, L.-A.

X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[CrossRef] [PubMed]

K.-H. Luo, J. Wen, X.-H. Chen, Q. Liu, M. Xiao, L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009).
[CrossRef]

Xiao, M.

J. Wen, Y. Zhang, M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt. Photon. 5, 83–130 (2013).
[CrossRef]

K.-H. Luo, J. Wen, X.-H. Chen, Q. Liu, M. Xiao, L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009).
[CrossRef]

Xiong, J.

X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[CrossRef] [PubMed]

Yamamoto, T.

T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
[CrossRef]

Yanagihara, Y.

H. Goto, H. Wang, T. Horikiri, Y. Yanagihara, T. Kobayashi, “Two-photon interference of multimode two-photon pairs with an unbalanced interferometer,” Phys. Rev. A 69, 035801 (2004).
[CrossRef]

H. Goto, Y. Yanagihara, H. Wang, T. Horikiri, T. Kobayashi, “Observation of an oscillatory correlation function of multimode two-photon pairs,” Phys. Rev. A 68, 015803 (2003).
[CrossRef]

Yiannopoulos, K.

K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, G. Guekos, “Rate multiplication by double-passing Fabry-Perot filtering,” IEEE Photon. Technol. Lett. 15, 1294–1296 (2003).
[CrossRef]

Yin, G. Y.

S. Sensarn, G. Y. Yin, S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
[CrossRef] [PubMed]

Zäh, F.

Zavatta, A.

A. Zavatta, S. Viciani, M. Bellini, “Recurrent fourth-order interference dips and peaks with a comblike two-photon entangled state,” Phys. Rev. A 70, 023806 (2004).
[CrossRef]

Zervas, M. N.

Zhang, J.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455 (2012).

Zhang, X.

X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[CrossRef] [PubMed]

Zhang, Y.

Adv. Opt. Photon. (1)

Electron. Lett. (1)

T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43, 1040–1042 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[CrossRef]

I. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25, 97–103 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azaña, M. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Yiannopoulos, K. Vyrsokinos, E. Kehayas, N. Pleros, K. Vlachos, H. Avramopoulos, G. Guekos, “Rate multiplication by double-passing Fabry-Perot filtering,” IEEE Photon. Technol. Lett. 15, 1294–1296 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Nature (3)

A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature 398, 189–190 (1999).
[CrossRef]

T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

J. M. Lukens, D. E. Leaird, A. M. Weiner, “A temporal cloak at telecommunication data rate,” Nature 498, 205–208 (2013).
[CrossRef] [PubMed]

Nature Photon. (2)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nature Photon. 5, 186–188 (2011).
[CrossRef]

N. Gisin, R. Thew, “Quantum communication,” Nature Photon. 1, 165–171 (2007).
[CrossRef]

Opt. Commun. (2)

J. Perina, “Characterization of a resonator using entangled two-photon states,” Opt. Commun. 221, 153–161 (2003).
[CrossRef]

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (8)

F.-Y. Wang, B.-S. Shi, G.-C. Guo, “Observation of time correlation function of multimode two-photon pairs on a rubidium D2 line,” Opt. Lett. 33, 2191–2193 (2008).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, “Generation of terahertz-rate trains of femtosecond pulses by phase-only filtering,” Opt. Lett. 15, 51–53 (1990).
[CrossRef] [PubMed]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

P. Petropoulos, M. Ibsen, M. N. Zervas, D. J. Richardson, “Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating,” Opt. Lett. 25, 521–523 (2000).
[CrossRef]

J. Caraquitena, Z. Jiang, D. E. Leaird, A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32, 716–718 (2007).
[CrossRef] [PubMed]

V. Torres-Company, J. Lancis, P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33, 1822–1824 (2008).
[CrossRef] [PubMed]

J. Azaña, M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672–1674 (1999).
[CrossRef]

B. H. Kolner, M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14, 630–632 (1989).
[CrossRef] [PubMed]

Philos. Mag. Ser. 3 (1)

H. Talbot, “Facts relating to optical science.” Philos. Mag. Ser. 3 9, 401–407 (1836).

Phys. Rev. A (10)

H. Goto, Y. Yanagihara, H. Wang, T. Horikiri, T. Kobayashi, “Observation of an oscillatory correlation function of multimode two-photon pairs,” Phys. Rev. A 68, 015803 (2003).
[CrossRef]

H. Goto, H. Wang, T. Horikiri, Y. Yanagihara, T. Kobayashi, “Two-photon interference of multimode two-photon pairs with an unbalanced interferometer,” Phys. Rev. A 69, 035801 (2004).
[CrossRef]

H. Wang, T. Horikiri, T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[CrossRef]

H.-b. Wang, T. Kobayashi, “Quantum interference of a mode-locked two-photon state,” Phys. Rev. A 70, 053816 (2004).
[CrossRef]

M. A. Sagioro, C. Olindo, C. H. Monken, S. Pádua, “Time control of two-photon interference,” Phys. Rev. A 69, 053817 (2004).
[CrossRef]

A. Zavatta, S. Viciani, M. Bellini, “Recurrent fourth-order interference dips and peaks with a comblike two-photon entangled state,” Phys. Rev. A 70, 023806 (2004).
[CrossRef]

Y. J. Lu, Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

V. Torres-Company, J. Lancis, H. Lajunen, A. T. Friberg, “Coherence revivals in two-photon frequency combs,” Phys. Rev. A 84, 033830 (2011).
[CrossRef]

K.-H. Luo, J. Wen, X.-H. Chen, Q. Liu, M. Xiao, L.-A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009).
[CrossRef]

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (8)

X.-B. Song, H.-B. Wang, J. Xiong, K. Wang, X. Zhang, K.-H. Luo, L.-A. Wu, “Experimental observation of quantum Talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[CrossRef] [PubMed]

Y. J. Lu, R. L. Campbell, Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91, 163602 (2003).
[CrossRef] [PubMed]

B. Dayan, A. Pe’er, A. A. Friesem, Y. Silberberg, “Nonlinear interactions with an ultrahigh flux of broadband entangled photons,” Phys. Rev. Lett. 94, 043602 (2005).
[CrossRef] [PubMed]

A. Pe’er, B. Dayan, A. A. Friesem, Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

K. A. O’Donnell, A. B. U’Ren, “Time-resolved up-conversion of entangled photon pairs,” Phys. Rev. Lett. 103, 123602 (2009).
[CrossRef]

S. Sensarn, G. Y. Yin, S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett. 104, 253602 (2010).
[CrossRef] [PubMed]

K. A. O’Donnell, “Observations of dispersion cancellation of entangled photon pairs,” Phys. Rev. Lett. 106, 063601 (2011).
[CrossRef]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, A. M. Weiner, “Demonstration of high-order dispersion cancellation with an ultrahigh-efficiency sum-frequency correlator,” Phys. Rev. Lett. 111, 193603 (2013).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

Y. Shih, “Entangled biphoton source - property and preparation,” Rep. Prog. Phys. 66, 1009 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Science (1)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317–1319 (1990).
[CrossRef] [PubMed]

Other (6)

M. R. Schroeder, Number Theory in Science and Communication (Springer-Verlag, Berlin, 1986).
[CrossRef]

A. M. Weiner, Ultrafast Optics (Wiley, Hoboken, NJ, 2009).
[CrossRef]

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).
[CrossRef]

K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf, ed., vol. 27, 1–108 (Elsevier, 1989).
[CrossRef]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, Q. Lin, “A silicon-chip source of bright photon-pair comb,” arXiv:1210.4455 (2012).

V. Torres-Company, J. Lancis, P. Andrés, “Space-time analogies in optics,” in Progress in Optics, E. Wolf, ed. vol. 56, 1–80 (Elsevier, 2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Experimental setup. (b) Biphoton spectrum, measured after the first collimator, with 2.4-THz signal and idler passbands marked. (c) Measured correlation function with pulse shaper compensating setup dispersion. Error bars represent the standard deviation of five 1-s measurements, and the dotted curve gives the theoretical result.

Fig. 2
Fig. 2

Amplitude filtering. (a) Signal spectrum measured after the pulse shaper (with idler blocked). The nearly flat spectrum of Fig. 1(b) is converted to a set of three passbands, spaced by 650 GHz and each of width 250 GHz. (b) Measured temporal correlation function for the spectrum in (a), but with the low-frequency idler passed. A 650-GHz correlation train with three peaks is generated, in accordance with theoretical predictions.

Fig. 3
Fig. 3

Simulated Talbot carpets. (a) Theoretical temporal correlation as a function of applied dispersion, for our three-peak signal spectrum but with infinitely narrow linewidth. Perfect revivals are observed at integer multiples of the Talbot dispersion. (b) Corresponding correlation function when the linewidth is 250 GHz, as in Fig. 2(a). Dashed horizontal lines indicate the values of dispersion considered in Fig. 4. Imperfect—but still clear—self-imaging is obtained over the first Talbot length, limited by dispersive spreading. (An overall delay shift has been subtracted off for clarity.)

Fig. 4
Fig. 4

Examples of Talbot interference. Biphoton correlation functions measured for dispersion Φ+ equal to (a) 0.25ΦT, (b) 0.35ΦT, (c) 0.5ΦT, and (d) ΦT.

Fig. 5
Fig. 5

Coherence revival comparison. (a) Overlay of the zero-, half-, and full-Talbot cases, after delay correction to center all at zero delay. 650-GHz trains are seen in all cases, with the finite linewidth responsible for overall spreading. (b) Overlay of the zero- and quarter-Talbot cases, again shifted so both are centered at zero delay. The original 650-GHz train is doubled to 1.3 THz at the quarter-Talbot dispersion, as expected from theory. (In both plots, error bars have been omitted for clarity.)

Fig. 6
Fig. 6

M-sequence filtering. (a) Measured correlation function for length-7 M-sequence with a π phase shift. (b) Correlation function for the same M-sequence but with a 0.78π phase shift (blue), compared to an amplitude filter at the same repetition rate (red). (c) Correlation function for a length-3 M-sequence with a 0.65π phase shift (blue) and the corresponding amplitude filter. In both (b) and (c), phase filtering yields a flux improvement roughly equal to the number of peaks.

Fig. 7
Fig. 7

Examination of pulse-shaper time aperture. Normalized coincidence rate for periodic repetitions of length-3 M-sequences with (a) 16-GHz chips, (b) 9-GHz chips, and (c) 5-GHz chips. The theoretical curves are obtained with T = 50 ps in Eq. (11).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

| Ψ = M | vac s | vac i + d Ω ϕ ( Ω ) | ω 0 + Ω s | ω 0 Ω i ,
ψ ( t + τ , t ) = vac | E ^ s ( + ) ( t + τ ) E ^ i ( + ) ( t ) | Ψ ,
ψ ( τ ) = d Ω ϕ ( Ω ) H s ( ω 0 + Ω ) H i ( ω 0 Ω ) e i Ω τ ,
H s ( ω 0 + Ω ) = n = 0 N 1 a n δ ( Ω n ω FSR ) e i Φ 2 ( s ) Ω 2 / 2
H i ( ω 0 Ω ) = e i Φ 2 ( i ) Ω 2 / 2 ,
ψ ( τ ) = n = 0 N 1 ϕ ( n ω FSR ) a n e i Φ + n 2 ω FSR 2 / 2 e in ω FSR τ ,
Φ T = 4 π ω FSR 2 ,
Φ + = 0.25 Φ T , 0.35 Φ T , 0.5 Φ T , Φ T .
Γ ( 2 , 2 ) ( τ ) = d Ω d Ω K * ( Ω ) K ( Ω ) e i ( Ω Ω ) τ .
Γ ( 2 , 2 ) ( τ ) = d Δ e i Δ τ d Ω K * ( Ω ) K ( Ω + Δ ) .
h ( t ) = h ( 0 ) ( t ) e t 2 / T 2 ,
ψ ˜ ( τ ) = d Ω ϕ ( Ω ) H ˜ s ( ω 0 + Ω , τ / 2 ) H ˜ i ( ω 0 Ω , τ / 2 ) ,
H ˜ s ( 0 ) ( ω 0 + Ω , τ / 2 ) = C ( Ω ) e i Ω τ / 2
H ˜ i ( 0 ) ( ω 0 Ω , τ / 2 ) = e i Ω τ / 2 ,

Metrics