Abstract

We report on an optical parametric amplifier at high repetition rate of 41.7 MHz seeded by an optical soliton from a tapered fiber. Gap-free signal tuning from 1.35 μm to 1.95 μm with corresponding idler wavelengths from 2.2 μm to 4.5 μm is demonstrated. The system provides up to 1.8 W average power at 1.4 μm, more than 1.1 W up to 1.7 μm, and more than 400 mW up to 4.0 μm with a signal pulse duration of 200 to 300 fs. It is directly pumped by a solid-state oscillator providing up to 7.4 W at 1.04 μm wavelength with 425 fs pulse duration. Soliton-seeding is shown to lead to excellent pulse-to-pulse stability, but it introduces a timing-jitter on the millisecond timescale. Using a two-stage concept the timing-jitter is efficiently suppressed due to the passive synchronization of both conversion stages.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picqué, T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [CrossRef]
  2. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nature Mat. 10, 352–356 (2011).
    [CrossRef]
  3. A. H. Zewail, Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, Singapore, 1994).
  4. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 μm,” Opt. Lett. 34, 1330–1332 (2009).
    [CrossRef] [PubMed]
  5. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
    [CrossRef] [PubMed]
  6. S. Marzenell, R. Beigang, R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 μm to 8 μm,” Appl. Phys. B 69, 423–428 (1999).
    [CrossRef]
  7. T. Südmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, D. C. Hanna, ”Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett. 26, 304–306 (2001).
    [CrossRef]
  8. R. Hegenbarth, A. Steinmann, G. Toth, J. Hebling, H. Giessen, “Two-color femtosecond optical parametric oscillator with 1.7 W output pumped by a 7.4 W Yb:KGW laser,” J. Opt. Soc. Am. B 28, 1344–1352 (2011).
    [CrossRef]
  9. Y.-W. Tzeng, Y.-Y. Lin, C.-H. Huang, J.-M. Liu, H.-C. Chui, H.-L. Liu, J. M. Stone, J. C. Knight, S.-W. Chu, “Broadband tunable optical parametric amplification from a single 50 MHz ultrafast fiber laser,” Opt. Express 17, 7304–7309 (2009).
    [CrossRef] [PubMed]
  10. J. Krauth, A. Steinmann, R. Hegenbarth, M. Conforti, H. Giessen, “Broadly tunable femtosecond near- and mid-IR source by direct pumping of an OPA with a 41.7 MHz Yb:KGW oscillator,” Opt. Express 21, 11516–11522 (2013).
    [CrossRef] [PubMed]
  11. J. Wueppen, B. Jungbluth, T. Taubner, P. Loosen, “Ultrafast Tunable Mid IR Source,” 36th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-Thz), 1, 2–7 (2011)
  12. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source,” Opt. Lett. 32, 1138–1140 (2007).
    [CrossRef] [PubMed]
  13. C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79, 033818 (2009).
    [CrossRef]
  14. M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, U. Morgner, “Near-infrared optical parametric amplifier at 1 MHz directly pumped by a femtosecond oscillator,” Opt. Lett. 32, 1489–1491 (2007).
    [CrossRef] [PubMed]
  15. G. Cerullo, S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Inst. 74, 1–18 (2003).
    [CrossRef]
  16. M. Bradler, C. Homann, E. Riedle, “Mid-IR femtosecond pulse generation on the microjoule level up to 5 μm at high repetition rates,” Opt. Lett. 36, 4212–4214 (2011).
    [CrossRef] [PubMed]
  17. T. W. Neely, T. A. Johnson, S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36, 4020–4022 (2011).
    [CrossRef] [PubMed]
  18. Y. Yao, Wayne H. Knox, “Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers,” Opt. Express 21, 26612–26619 (2013).
    [CrossRef] [PubMed]
  19. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  20. G. Genty, S. Coen, J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
    [CrossRef]
  21. A. Steinmann, B. Metzger, R. Hegenbarth, H. Giessen, “Compact 7.4 W femtosecond oscillator for whitelight generation and nonlinear microscopy,” Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995).
  23. S. Pricking, H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
    [CrossRef] [PubMed]
  24. R. Zhang, J. Teipel, X. Zhang, D. Nau, H. Giessen, “Group velocity dispersion of tapered fibers immersed in different liquid,” Opt. Express 12, 1700–1707 (2004).
    [CrossRef] [PubMed]

2013 (2)

2012 (2)

2011 (5)

2010 (1)

2009 (3)

2007 (3)

2006 (1)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2004 (1)

2003 (1)

G. Cerullo, S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Inst. 74, 1–18 (2003).
[CrossRef]

2001 (1)

1999 (1)

S. Marzenell, R. Beigang, R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 μm to 8 μm,” Appl. Phys. B 69, 423–428 (1999).
[CrossRef]

Adler, F.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995).

Aus der Au, J.

Beigang, R.

S. Marzenell, R. Beigang, R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 μm to 8 μm,” Appl. Phys. B 69, 423–428 (1999).
[CrossRef]

Biegert, J.

Bradler, M.

Brida, D.

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79, 033818 (2009).
[CrossRef]

Byer, R. L.

Cerullo, G.

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79, 033818 (2009).
[CrossRef]

M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, U. Morgner, “Near-infrared optical parametric amplifier at 1 MHz directly pumped by a femtosecond oscillator,” Opt. Lett. 32, 1489–1491 (2007).
[CrossRef] [PubMed]

G. Cerullo, S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Inst. 74, 1–18 (2003).
[CrossRef]

Chu, S.-W.

Chui, H.-C.

Cirmi, G.

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79, 033818 (2009).
[CrossRef]

Coen, S.

G. Genty, S. Coen, J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Conforti, M.

Cossel, K. C.

De Silvestri, S.

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79, 033818 (2009).
[CrossRef]

G. Cerullo, S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Inst. 74, 1–18 (2003).
[CrossRef]

Diddams, S. A.

Dudley, J. M.

G. Genty, S. Coen, J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Erny, C.

Fermann, M.

Fermann, M. E.

Genty, G.

G. Genty, S. Coen, J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Giessen, H.

Hanna, D. C.

Hänsch, T. W.

A. Schliesser, N. Picqué, T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[CrossRef]

Hartl, I.

Hebling, J.

Hegenbarth, R.

Hillenbrand, R.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nature Mat. 10, 352–356 (2011).
[CrossRef]

Homann, C.

Huang, C.-H.

Huth, F.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nature Mat. 10, 352–356 (2011).
[CrossRef]

Jiang, J.

Johnson, T. A.

Jungbluth, B.

J. Wueppen, B. Jungbluth, T. Taubner, P. Loosen, “Ultrafast Tunable Mid IR Source,” 36th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-Thz), 1, 2–7 (2011)

Keller, U.

Knight, J. C.

Knox, Wayne H.

Krauth, J.

Kühlke, D.

Leindecker, N.

Leitenstorfer, A.

Lin, Y.-Y.

Liu, H.-L.

Liu, J.-M.

Loosen, P.

J. Wueppen, B. Jungbluth, T. Taubner, P. Loosen, “Ultrafast Tunable Mid IR Source,” 36th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-Thz), 1, 2–7 (2011)

Manzoni, C.

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79, 033818 (2009).
[CrossRef]

Marandi, A.

Marangoni, M.

Marzenell, S.

S. Marzenell, R. Beigang, R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 μm to 8 μm,” Appl. Phys. B 69, 423–428 (1999).
[CrossRef]

Metzger, B.

A. Steinmann, B. Metzger, R. Hegenbarth, H. Giessen, “Compact 7.4 W femtosecond oscillator for whitelight generation and nonlinear microscopy,” Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Morgner, U.

Moutzouris, K.

Nau, D.

Neely, T. W.

Ocelic, N.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nature Mat. 10, 352–356 (2011).
[CrossRef]

Osellame, R.

Paschotta, R.

Picqué, N.

A. Schliesser, N. Picqué, T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[CrossRef]

Pricking, S.

Ramponi, R.

Riedle, E.

Ross, G. W.

Schliesser, A.

A. Schliesser, N. Picqué, T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[CrossRef]

Schnell, M.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nature Mat. 10, 352–356 (2011).
[CrossRef]

Schunemann, P. G.

Smith, P. G. R.

Steinmann, A.

Stone, J. M.

Südmeyer, T.

Taubner, T.

J. Wueppen, B. Jungbluth, T. Taubner, P. Loosen, “Ultrafast Tunable Mid IR Source,” 36th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-Thz), 1, 2–7 (2011)

Teipel, J.

Thorpe, M. J.

Toth, G.

Tzeng, Y.-W.

Vodopyanov, K. L.

Wallenstein, R.

S. Marzenell, R. Beigang, R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 μm to 8 μm,” Appl. Phys. B 69, 423–428 (1999).
[CrossRef]

Wittborn, J.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nature Mat. 10, 352–356 (2011).
[CrossRef]

Wueppen, J.

J. Wueppen, B. Jungbluth, T. Taubner, P. Loosen, “Ultrafast Tunable Mid IR Source,” 36th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-Thz), 1, 2–7 (2011)

Yao, Y.

Ye, J.

Zewail, A. H.

A. H. Zewail, Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, Singapore, 1994).

Zhang, R.

Zhang, X.

36th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-Thz) (1)

J. Wueppen, B. Jungbluth, T. Taubner, P. Loosen, “Ultrafast Tunable Mid IR Source,” 36th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-Thz), 1, 2–7 (2011)

Appl. Phys. B (1)

S. Marzenell, R. Beigang, R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 μm to 8 μm,” Appl. Phys. B 69, 423–428 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

A. Schliesser, N. Picqué, T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[CrossRef]

Nature Mat. (1)

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nature Mat. 10, 352–356 (2011).
[CrossRef]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. A (1)

C. Manzoni, G. Cirmi, D. Brida, S. De Silvestri, G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79, 033818 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Rev. Sci. Inst. (1)

G. Cerullo, S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Inst. 74, 1–18 (2003).
[CrossRef]

Other (3)

A. H. Zewail, Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, Singapore, 1994).

A. Steinmann, B. Metzger, R. Hegenbarth, H. Giessen, “Compact 7.4 W femtosecond oscillator for whitelight generation and nonlinear microscopy,” Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the OPA. The seed generation stage (I) includes pulse compression, fiber launch power and polarization control and a small-waist long tapered fiber. The seed is further amplified by two parametric conversion stages (II) and (III). HWP: half-wave plate, QWP: quarter-wave plate, ATT: variable attenuator, GTI: chirped mirror, DM: dichroic mirror, TC: temperature control.

Fig. 2
Fig. 2

(a) Tuning spectra of the soliton. For clarity, only the highest order soliton is shown. (b) Broadband seed spectrum obtained with high fiber launch power and polarization alignment. The signal spectra after the first (c) and second stage (d) range from 1.35 to 1.95 μm. Note that the spectra of each stage are not measured simultaneously.

Fig. 3
Fig. 3

(a) Signal and idler power versus wavelength. The black dashed line denotes the idler power predicted by the Manley-Rowe relations at the measured signal power. The signal power level of the second stage stays above 1.1 W up to 1700 nm, while more than 400 mW of idler power are generated in the entire tuning range. The decrease of idler power at high wavelengths is due to upcoming absorption in PPLN for more than 4 μm. (b) Total signal power (black) and signal conversion efficiency (blue) of first and second stage versus pump power of the second stage for 1375 nm signal wavelength. The output power (black) increases almost linearly up to 1.82 W, while the signal conversion efficiency increases from 35% to 46%. The photon conversion efficiency (green) reaches more than 61%.

Fig. 4
Fig. 4

Noise dynamics on different timescales. (a) Pulse-to-pulse fluctuations of a supercontinuum-seeded OPA [10]. (b) and (c) show the same measurement for a soliton-seeded OPA after the first and second stage. (d)–(f) Long-term stability over half an hour. The measurements were taken at 1550 nm. Better performance is obtained at shorter wavelengths, while the fluctuations increase at higher wavelengths.

Metrics