Abstract

Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, M. Tomizawa, “Elastic and adaptive optical networks: possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
    [CrossRef]
  2. K. Sato, “Recent developments in and challenges of elastic optical path networking,” in Proceedings of ECOC2011, Geneva, Switzerland, Mo.2.K (2011).
  3. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [CrossRef]
  4. D. Simeonidou, R. Nejabati, and M. Channegowda, “Software defined optical networks technology and infrastructure: enabling software-defined optical network oOperations,” in Proceedings of OFC/NFOEC 2013, Anaheim, CA, USA, Mar.2013.OFC2013, OTh1H.3 (2013)
  5. L. Liu, R. Muñoz, R. Casellas, T. Tsuritani, R. Martínez, I. Morita, “OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic optical path networks,” Opt. Express 21(4), 4194–4204 (2013).
    [CrossRef] [PubMed]
  6. M. Channegowda, R. Nejabati, M. Rashidi Fard, S. Peng, N. Amaya, G. Zervas, D. Simeonidou, R. Vilalta, R. Casellas, R. Martínez, R. Muñoz, L. Liu, T. Tsuritani, I. Morita, A. Autenrieth, J. P. Elbers, P. Kostecki, P. Kaczmarek, “Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed,” Opt. Express 21(5), 5487–5498 (2013).
    [CrossRef] [PubMed]
  7. J. Zhang, H. Yang, Y. Zhao, Y. Ji, H. Li, Y. Lin, G. Li, J. Han, Y. Lee, T. Ma, “Experimental demonstration of elastic optical networks based on enhanced software defined networking (eSDN) for data center application,” Opt. Express 21(22), 26990–27002 (2013).
    [CrossRef] [PubMed]
  8. Y. Zhao, J. Zhang, T. Zhou, H. Yang, Y. Lin, J. Han, G. Li, and H. Xu, “Time-aware software defined networking (Ta-SDN) for flexi-grid optical networks supporting data center application,” GlobeCom2013, Atlanta, USA (2013).
  9. R. Nejabati, Y. Shu, B. J. Puttnam, W. Klaus, N. Wada, Y. Awaji, M. Channegowda, N. Amaya, H. Harai, Y. Ou, D. Simeonidou, M. Rashidi, T. Miyazawa, J. Sakaguchi, G. Zervas, S. Yan, and B. R. Rofoee, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in Proceedings of ECOC2013, London, UK, Sep.2013, paper PDP4-f-3 (2013).
  10. R. Casellas, R. Martínez, R. Munoz, L. Liu, T. Tsuritani, and I. Morita, “An integrated stateful PCE/OpenFlow controller for the control and management of flexi-grid optical networks,” OFC/NFOEC 2013, Anaheim, CA, USA, OW4G (2013).
  11. J. Zhang, Y. Zhao, H. Yang, Y. Ji, H. Li, Y. Lin, G. Li, J. Han, Y. Lee, and T. Ma, “First demonstration of enhanced software defined networking (eSDN) over elastic grid (eGrid) optical networks for data center service migration,” in Proceedings of OFC/NFOEC 2013, Anaheim, CA, USA, Mar.2013, paper PDP5B.1 (2013).
  12. A. Lord, A. Autenrieth, P. Gunning, T. Szyrkowiec, J. Elbers, A. Lumb, and P. Wright, “First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack & OpenFlow orchestration,” in Proceedings of ECOC2013, London, UK, Sep.2013, paper PDP4-f-1 (2013).
  13. L. Liu, W. R. Peng, R. Casellas, T. Tsuritani, I. Morita, R. Martínez, R. Muñoz, S. J. Yoo, “Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission,” Opt. Express 22(1), 30–40 (2014).
    [CrossRef] [PubMed]
  14. L. Liu, H. Choi, R. Casellas, T. Tsuritani, I. Morita, R. Martinez, R. Munoz, “Demonstration of a dynamic transparent optical network employing flexible transmitters/receivers controlled by an OpenFlow–stateless PCE integrated control plane,” J. Opt. Commun. Netw. 5(10), A66–A75 (2013).
    [CrossRef]
  15. J. Zhang, Y. Zhao, X. Chen, Y. Ji, M. Zhang, H. Wang, Y. Zhao, Y. Tu, Z. Wang, H. Li, “The first experimental demonstration of a DREAM-based large-scale optical transport network with 1000 control plane nodes,” Opt. Express 19(26), B746–B755 (2011).
    [CrossRef] [PubMed]

2014 (1)

2013 (4)

2011 (2)

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, M. Tomizawa, “Elastic and adaptive optical networks: possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[CrossRef]

J. Zhang, Y. Zhao, X. Chen, Y. Ji, M. Zhang, H. Wang, Y. Zhao, Y. Tu, Z. Wang, H. Li, “The first experimental demonstration of a DREAM-based large-scale optical transport network with 1000 control plane nodes,” Opt. Express 19(26), B746–B755 (2011).
[CrossRef] [PubMed]

2009 (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Amaya, N.

Autenrieth, A.

Casellas, R.

Channegowda, M.

Chen, X.

Choi, H.

Elbers, J. P.

Han, J.

Hirano, A.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, M. Tomizawa, “Elastic and adaptive optical networks: possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[CrossRef]

Ishida, O.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, M. Tomizawa, “Elastic and adaptive optical networks: possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[CrossRef]

Ji, Y.

Jinno, M.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, M. Tomizawa, “Elastic and adaptive optical networks: possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Kaczmarek, P.

Kostecki, P.

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Lee, Y.

Li, G.

Li, H.

Lin, Y.

Liu, L.

Ma, T.

Martinez, R.

Martínez, R.

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Morita, I.

Munoz, R.

Muñoz, R.

Nejabati, R.

Ohara, T.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, M. Tomizawa, “Elastic and adaptive optical networks: possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[CrossRef]

Peng, S.

Peng, W. R.

Rashidi Fard, M.

Simeonidou, D.

Sone, Y.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, M. Tomizawa, “Elastic and adaptive optical networks: possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Tomizawa, M.

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, M. Tomizawa, “Elastic and adaptive optical networks: possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[CrossRef]

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

Tsuritani, T.

Tu, Y.

Vilalta, R.

Wang, H.

Wang, Z.

Yang, H.

Yoo, S. J.

Zervas, G.

Zhang, J.

Zhang, M.

Zhao, Y.

IEEE Commun. Mag. (2)

M. Jinno, T. Ohara, Y. Sone, A. Hirano, O. Ishida, M. Tomizawa, “Elastic and adaptive optical networks: possible adoption scenarios and future standardization aspects,” IEEE Commun. Mag. 49(10), 164–172 (2011).
[CrossRef]

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[CrossRef]

J. Opt. Commun. Netw. (1)

Opt. Express (5)

J. Zhang, Y. Zhao, X. Chen, Y. Ji, M. Zhang, H. Wang, Y. Zhao, Y. Tu, Z. Wang, H. Li, “The first experimental demonstration of a DREAM-based large-scale optical transport network with 1000 control plane nodes,” Opt. Express 19(26), B746–B755 (2011).
[CrossRef] [PubMed]

L. Liu, W. R. Peng, R. Casellas, T. Tsuritani, I. Morita, R. Martínez, R. Muñoz, S. J. Yoo, “Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission,” Opt. Express 22(1), 30–40 (2014).
[CrossRef] [PubMed]

L. Liu, R. Muñoz, R. Casellas, T. Tsuritani, R. Martínez, I. Morita, “OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic optical path networks,” Opt. Express 21(4), 4194–4204 (2013).
[CrossRef] [PubMed]

M. Channegowda, R. Nejabati, M. Rashidi Fard, S. Peng, N. Amaya, G. Zervas, D. Simeonidou, R. Vilalta, R. Casellas, R. Martínez, R. Muñoz, L. Liu, T. Tsuritani, I. Morita, A. Autenrieth, J. P. Elbers, P. Kostecki, P. Kaczmarek, “Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed,” Opt. Express 21(5), 5487–5498 (2013).
[CrossRef] [PubMed]

J. Zhang, H. Yang, Y. Zhao, Y. Ji, H. Li, Y. Lin, G. Li, J. Han, Y. Lee, T. Ma, “Experimental demonstration of elastic optical networks based on enhanced software defined networking (eSDN) for data center application,” Opt. Express 21(22), 26990–27002 (2013).
[CrossRef] [PubMed]

Other (7)

Y. Zhao, J. Zhang, T. Zhou, H. Yang, Y. Lin, J. Han, G. Li, and H. Xu, “Time-aware software defined networking (Ta-SDN) for flexi-grid optical networks supporting data center application,” GlobeCom2013, Atlanta, USA (2013).

R. Nejabati, Y. Shu, B. J. Puttnam, W. Klaus, N. Wada, Y. Awaji, M. Channegowda, N. Amaya, H. Harai, Y. Ou, D. Simeonidou, M. Rashidi, T. Miyazawa, J. Sakaguchi, G. Zervas, S. Yan, and B. R. Rofoee, “First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks,” in Proceedings of ECOC2013, London, UK, Sep.2013, paper PDP4-f-3 (2013).

R. Casellas, R. Martínez, R. Munoz, L. Liu, T. Tsuritani, and I. Morita, “An integrated stateful PCE/OpenFlow controller for the control and management of flexi-grid optical networks,” OFC/NFOEC 2013, Anaheim, CA, USA, OW4G (2013).

J. Zhang, Y. Zhao, H. Yang, Y. Ji, H. Li, Y. Lin, G. Li, J. Han, Y. Lee, and T. Ma, “First demonstration of enhanced software defined networking (eSDN) over elastic grid (eGrid) optical networks for data center service migration,” in Proceedings of OFC/NFOEC 2013, Anaheim, CA, USA, Mar.2013, paper PDP5B.1 (2013).

A. Lord, A. Autenrieth, P. Gunning, T. Szyrkowiec, J. Elbers, A. Lumb, and P. Wright, “First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack & OpenFlow orchestration,” in Proceedings of ECOC2013, London, UK, Sep.2013, paper PDP4-f-1 (2013).

D. Simeonidou, R. Nejabati, and M. Channegowda, “Software defined optical networks technology and infrastructure: enabling software-defined optical network oOperations,” in Proceedings of OFC/NFOEC 2013, Anaheim, CA, USA, Mar.2013.OFC2013, OTh1H.3 (2013)

K. Sato, “Recent developments in and challenges of elastic optical path networking,” in Proceedings of ECOC2011, Geneva, Switzerland, Mo.2.K (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

SDN based flexi-grid optical networks architecture.

Fig. 2
Fig. 2

NOX based controller architecture.

Fig. 3
Fig. 3

Experimental scenario.

Fig. 4
Fig. 4

Network topology with various nodes.

Fig. 5
Fig. 5

Blocking probability under different network sizes.

Fig. 6
Fig. 6

Resource utilization under different network sizes.

Fig. 7
Fig. 7

Lightpath provisioning time under different network sizes.

Fig. 8
Fig. 8

Blocking probability under different DCN bandwidths.

Fig. 9
Fig. 9

Delay time under different DCN bandwidths.

Fig. 10
Fig. 10

Node number under different DCN bandwidths.

Fig. 11
Fig. 11

Convergence and restoration time.

Metrics