Abstract

We reported a record high power (>250 mW) and compact near-infrared fiber-optic femtosecond Cherenkov radiation source and its new application on nonlinear light microscopy for the first time (to our best knowledge). The high power femtosecond Cherenkov radiation was generated by 1.03 μm femtosecond pulses from a portable diode-pumped laser and a photonic crystal fiber as a compact, flexible, and highly efficient wavelength convertor. Sectioned nonlinear light microscopy images from mouse brain blood vessel network and rat tail tendon were then performed by the demonstrated light source. Due to the advantages of its high average output power (>250 mW), high pulse energy (>4 nJ), excellent wavelength conversion efficiency (>40%), compactness, simplicity in configuration, and turn-key operation, the demonstrated femtosecond Cherenkov radiation source could thus be widely applicable as an alternative excitation source to mode-locked Ti:Sapphire lasers for future clinical nonlinear microscopy or other applications requiring synchronized multi-wavelength light sources.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. J. M. Squirrell, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
    [CrossRef] [PubMed]
  3. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [CrossRef] [PubMed]
  4. S. Sakadzić, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kaertner, J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr: LiCAF laser,” Opt. Express 16(25), 20848–20863 (2008).
    [CrossRef] [PubMed]
  5. M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
    [CrossRef] [PubMed]
  6. S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004).
    [CrossRef] [PubMed]
  7. S. H. Chia, C. H. Yu, C. H. Lin, N. C. Cheng, T. M. Liu, M. C. Chan, I. H. Chen, C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
    [CrossRef] [PubMed]
  8. R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
    [CrossRef] [PubMed]
  9. R. M. Williams, W. R. Zipfel, W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
    [CrossRef] [PubMed]
  10. C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, T. W. Hänsch, “Design for a compact tunable Ti:sapphire laser,” Opt. Lett. 20(3), 297–299 (1995).
    [CrossRef] [PubMed]
  11. P. St. J. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  12. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  13. M. C. Chan, T. M. Liu, S. P. Tai, C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
    [CrossRef] [PubMed]
  14. M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
    [CrossRef]
  15. G. Chang, L.-J. Chen, F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010).
    [CrossRef] [PubMed]
  16. X. M. Liu, J. Lægsgaard, U. Møller, H. H. Tu, S. A. Boppart, D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37(13), 2769–2771 (2012).
    [CrossRef] [PubMed]
  17. J. Takayanagi, T. Sugiura, M. Yoshida, N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
    [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  19. W. H. Lin, C. M. Chen, Y. C. Lan, and M. C. Chan are preparing a manuscript to be called “Numerical analysis of synchronized fiber-optic multiple wavelength converters through Cherenkov radiation and soliton-self-frequency shift.”
  20. M. T. Tsai, M. C. Chan, “Simultaneous 0.8, 1.0, and 1.3 μm multi-spectral and common-path broadband source for optical coherence tomography,” Opt. Lett. 39(4), 865–868 (2014).
    [CrossRef] [PubMed]
  21. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996)
  22. J. Y Lu, C. W. Huang, J. C. Chen, and M. C. Chan are preparing a manuscript to be called “Energenic 1.3 μm Raman soliton source for multi-photon and multi-harmonic microscopy.”
  23. G. J. Tearney, R. H. Webb, B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
    [CrossRef] [PubMed]
  24. Y. Mao, S. Chang, E. Murdock, C. Flueraru, “Simultaneous dual-wavelength-band common-path swept-source optical coherence tomography with single polygon mirror scanner,” Opt. Lett. 36(11), 1990–1992 (2011).
    [CrossRef] [PubMed]
  25. M. T. Myaing, J. Urayama, A. Braun, T. B. Norris, “Nonlinear propagation of negatively chirped pulses: Maximizing the peak intensity at the output of a fiber probe,” Opt. Express 7(5), 210–214 (2000).
    [CrossRef] [PubMed]
  26. I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
    [CrossRef]
  27. A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  28. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  29. C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
    [CrossRef]
  30. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  31. H. C. Wang, Y. C. Lu, C. Y. Chen, C. Y. Chi, S. C. Chin, C. C. Yang, “Non-degenerate fs pump-probe study on InGaN with multi-wavelength second-harmonic generation,” Opt. Express 13(14), 5245–5252 (2005).
    [CrossRef] [PubMed]

2014 (2)

M. T. Tsai, M. C. Chan, “Simultaneous 0.8, 1.0, and 1.3 μm multi-spectral and common-path broadband source for optical coherence tomography,” Opt. Lett. 39(4), 865–868 (2014).
[CrossRef] [PubMed]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

2013 (2)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[CrossRef] [PubMed]

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[CrossRef] [PubMed]

2012 (1)

2011 (1)

2010 (2)

2008 (3)

S. Sakadzić, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kaertner, J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr: LiCAF laser,” Opt. Express 16(25), 20848–20863 (2008).
[CrossRef] [PubMed]

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

2006 (2)

P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

J. Takayanagi, T. Sugiura, M. Yoshida, N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

2005 (3)

M. C. Chan, T. M. Liu, S. P. Tai, C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

H. C. Wang, Y. C. Lu, C. Y. Chen, C. Y. Chi, S. C. Chin, C. C. Yang, “Non-degenerate fs pump-probe study on InGaN with multi-wavelength second-harmonic generation,” Opt. Express 13(14), 5245–5252 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

2002 (1)

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

2000 (1)

1999 (2)

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

J. M. Squirrell, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

1998 (1)

1995 (1)

1994 (1)

1990 (1)

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Araki, T.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[CrossRef] [PubMed]

Bavister, B. D.

J. M. Squirrell, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

Boas, D. A.

Boppart, S. A.

Bouma, B. E.

Braun, A.

Chan, M. C.

Chang, G.

Chang, S.

Chen, C. Y.

Chen, I. H.

Chen, I.-H.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Chen, L. J.

Chen, L.-J.

Cheng, N. C.

Cheng, P. C.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Chi, C. Y.

Chia, S. H.

S. H. Chia, C. H. Yu, C. H. Lin, N. C. Cheng, T. M. Liu, M. C. Chan, I. H. Chen, C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[CrossRef] [PubMed]

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
[CrossRef]

Chin, S. C.

Chu, S.-W.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[CrossRef] [PubMed]

Demirbas, U.

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dickinson, M. E.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[CrossRef] [PubMed]

Flueraru, C.

Fraser, S. E.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[CrossRef] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Fujimoto, J. G.

Fukushima, S.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[CrossRef] [PubMed]

Guol, S. H.

Hänsch, T. W.

He, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hell, S. W.

Hemmerich, A.

Ho, M. C.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
[CrossRef]

Holtom, G. R.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[CrossRef] [PubMed]

Ivanov, A. A.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
[CrossRef]

Kaertner, F. X.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Kärtner, F. X.

Kieu, K. Q.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[CrossRef] [PubMed]

Lægsgaard, J.

Lin, B.-L.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Lin, C. H.

Liu, H. L.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
[CrossRef]

Liu, J. Y.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
[CrossRef]

Liu, T. M.

S. H. Chia, C. H. Yu, C. H. Lin, N. C. Cheng, T. M. Liu, M. C. Chan, I. H. Chen, C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[CrossRef] [PubMed]

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
[CrossRef]

M. C. Chan, T. M. Liu, S. P. Tai, C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[CrossRef] [PubMed]

Liu, X. M.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Lu, Y. C.

Mao, Y.

Matsumoto, T.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[CrossRef] [PubMed]

Mempel, T. R.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Møller, U.

Moore, A.

Murdock, E.

Murota, H.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[CrossRef] [PubMed]

Myaing, M. T.

Nishizawa, N.

J. Takayanagi, T. Sugiura, M. Yoshida, N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

Norris, T. B.

Peyghambarian, N.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

Ricci, L.

Russell, P. St. J.

P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

P. St. J. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Ruvinskaya, S.

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Sakadzic, S.

Sasaki, K.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[CrossRef] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[CrossRef] [PubMed]

Sennaroglu, A.

Simbuerger, E.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[CrossRef] [PubMed]

Squirrell, J. M.

J. M. Squirrell, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Sugiura, T.

J. Takayanagi, T. Sugiura, M. Yoshida, N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

Sun, C.-K.

S. H. Chia, C. H. Yu, C. H. Lin, N. C. Cheng, T. M. Liu, M. C. Chan, I. H. Chen, C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[CrossRef] [PubMed]

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
[CrossRef]

M. C. Chan, T. M. Liu, S. P. Tai, C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[CrossRef] [PubMed]

S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004).
[CrossRef] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Tai, S. P.

M. C. Chan, T. M. Liu, S. P. Tai, C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[CrossRef] [PubMed]

S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004).
[CrossRef] [PubMed]

Takayanagi, J.

J. Takayanagi, T. Sugiura, M. Yoshida, N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

Tanaka, R.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[CrossRef] [PubMed]

Tanaka, Y.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[CrossRef] [PubMed]

Tearney, G. J.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Tsai, M. T.

Tsai, T. H.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
[CrossRef]

S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004).
[CrossRef] [PubMed]

Tu, H. H.

Turchinovich, D.

Urayama, J.

Vuletic, V.

Wang, H. C.

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[CrossRef] [PubMed]

Waters, C. W.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[CrossRef] [PubMed]

Webb, R. H.

Webb, W. W.

R. M. Williams, W. R. Zipfel, W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

White, J. G.

J. M. Squirrell, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

Wichmann, J.

Williams, R. M.

R. M. Williams, W. R. Zipfel, W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[CrossRef] [PubMed]

Wokosin, D. L.

J. M. Squirrell, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

Xie, X. S.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[CrossRef] [PubMed]

Yang, C. C.

Yang, W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

Yasui, T.

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[CrossRef] [PubMed]

Yoshida, M.

J. Takayanagi, T. Sugiura, M. Yoshida, N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

Yu, C. H.

Zheltikov, A. M.

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
[CrossRef]

Zimmermann, B.

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[CrossRef] [PubMed]

Zimmermann, C.

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Biophys. J. (1)

R. M. Williams, W. R. Zipfel, W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (2)

M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M. Zheltikov, J. Y. Liu, H. L. Liu, C.-K. Sun, “1.2-2.2 μm Tunable Raman Soliton Source Based on a Cr:Forsterite-Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20(11), 900–922 (2008).
[CrossRef]

J. Takayanagi, T. Sugiura, M. Yoshida, N. Nishizawa, “1.0-1.7-μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett. 18(21), 2284–2286 (2006).
[CrossRef]

J. Biomed. Opt. (3)

M. C. Chan, T. M. Liu, S. P. Tai, C.-K. Sun, “Compact fiber-delivered Cr:Forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[CrossRef] [PubMed]

R. Tanaka, S. Fukushima, K. Sasaki, Y. Tanaka, H. Murota, T. Matsumoto, T. Araki, T. Yasui, “In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy,” J. Biomed. Opt. 18(6), 061231 (2013).
[CrossRef] [PubMed]

M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Nat. Biotechnol. (1)

J. M. Squirrell, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[CrossRef] [PubMed]

Nat. Photonics (2)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[CrossRef] [PubMed]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Opt. Quantum Electron. (1)

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, B.-L. Lin, “Wavelength dependent cell damages in multi-photon confocal microscopy,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Science (3)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (4)

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996)

J. Y Lu, C. W. Huang, J. C. Chen, and M. C. Chan are preparing a manuscript to be called “Energenic 1.3 μm Raman soliton source for multi-photon and multi-harmonic microscopy.”

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

W. H. Lin, C. M. Chen, Y. C. Lan, and M. C. Chan are preparing a manuscript to be called “Numerical analysis of synchronized fiber-optic multiple wavelength converters through Cherenkov radiation and soliton-self-frequency shift.”

Supplementary Material (1)

» Media 1: MOV (1444 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of the 0.6-0.8 μm Cherenkov radiation (CR) light source (enclosed in the dashed box) and related nonlinear microscope system. The light source was composed of a compact 1030 nm femtosecond laser as excitation source and a nonlinear fiber as an efficient wavelength convertor. Pump: Compact 1030 nm Ytterbium-doped femtosecond laser; ISO: optical isolator; PCF: photonic crystal fiber; BS: beam splitter; OBJ: microscope objective; CGF: Colored glass filter; PMT; photomultiplier tube.

Fig. 2
Fig. 2

Simulated linear phase-matching curve (black line) and nonlinear phase matching condition curves (red, yellow, green and blue lines) as the function of pump wavelength and pump power according to Eq. (1). The CR wavelength can be calculated via the phase-matching curve.

Fig. 3
Fig. 3

(a) The output spectrum and auto-correlation traces (inset) of the pump 1.03 μm excitation laser. (b)~(d): Power-dependent CR spectra at the end of the (b) 40 cm PCF [20], (c) 20 cm PCF, and (d) 8.5 cm PCF.

Fig. 4
Fig. 4

(a) The power-dependent pulsewidth measurements at the end of the 8.5 cm PCF. The values inserted in the figure represent the total average pump power after the PCF. (b) The average power of CR (solid-lines) and corresponding CR conversion efficiency (dashed-lines) of 40 cm (blue-rectangular), 20 cm (green-triangle), and 8.5 cm (red-circle) PCF as the function of pump power.

Fig. 5
Fig. 5

(a) Sectioned two-photon fluorescence images (TPF) of blood vessels in mouse brains with different z depth. The length of scalar bar is 25 μm and the z-step size is 5 μm. (b) Reconstructed blood vessel network of the mouse brain in 3D space (Media 1). (c) Second harmonic generation image (SHG) of rat tail tendon in Phosphate buffered saline. Image size: 50 μm by 50 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n2 ( ω CR ω P ) n n! β n ( ω P )= γ P P 2

Metrics