Abstract

We present a thorough practical design optimization of broadband low loss, terahertz (THz) photonic crystal fiber directional couplers in which the two cores are mechanically down-doped with a triangular array of air holes. A figure of merit taking both the 3-dB bandwidth and loss of the coupler into account, is used for optimization of the structure parameters, given by the diameter and pitch of the cladding (d and Λ) and of the core (dc and Λc) air-hole structure. The coupler with Λ = 498.7 µm, d = 324.2 µm, Λc = 74.8 µm, and dc = 32.5 µm is found to have the best performance at a center frequency of 1THz, with a bandwidth of 0.25 THz and a total device loss of 9.2 dB. The robustness of the optimum coupler to structural changes is investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The impact of elliptical deformations for optimizing the performance of dual-core fluorine-doped photonic crystal fiber couplers

Shailendra K. Varshney, Nikolaos J. Florous, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 14(5) 1982-1995 (2006)

Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler

Shuqin Lou, Zunwei Tang, and Liwen Wang
Appl. Opt. 50(14) 2016-2023 (2011)

Broadband terahertz fiber directional coupler

Kristian Nielsen, Henrik K. Rasmussen, Peter Uhd Jepsen, and Ole Bang
Opt. Lett. 35(17) 2879-2881 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photon. Rev. 5(1), 124–166 (2011).
    [Crossref]
  2. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
    [Crossref]
  3. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [Crossref] [PubMed]
  4. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011).
    [Crossref] [PubMed]
  5. H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20(28), 29507–29517 (2012).
    [Crossref] [PubMed]
  6. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [Crossref] [PubMed]
  7. H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett. 32(9), 1017–1019 (2007).
    [Crossref] [PubMed]
  8. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19(26), B848–B861 (2011).
    [Crossref] [PubMed]
  9. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
    [Crossref] [PubMed]
  10. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
    [Crossref] [PubMed]
  11. S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
    [Crossref]
  12. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
    [Crossref]
  13. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
    [Crossref] [PubMed]
  14. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [Crossref] [PubMed]
  15. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref] [PubMed]
  16. E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett. 36(10), 1782–1784 (2011).
    [Crossref] [PubMed]
  17. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
    [Crossref]
  18. Z. Wu, W. R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express 19(5), 3962–3972 (2011).
    [Crossref] [PubMed]
  19. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33(9), 902–904 (2008).
    [Crossref] [PubMed]
  20. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
    [Crossref] [PubMed]
  21. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogiaty, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011).
    [Crossref]
  22. K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [Crossref] [PubMed]
  23. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
    [Crossref] [PubMed]
  24. S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, “Characterization and modeling of Bragg gratings written in polymer fiber for use as filters in the THz region,” Opt. Express 20(9), 9564–9571 (2012).
    [Crossref] [PubMed]
  25. S. F. Zhou, L. Reekie, H. P. Chan, K. M. Luk, and Y. T. Chow, “Terahertz filter with tailored passband using multiple phase shifted fiber Bragg gratings,” Opt. Lett. 38(3), 260–262 (2013).
    [Crossref] [PubMed]
  26. G. Yan, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, and M. Skorobogatiy, “Low-loss terahertz waveguide Bragg grating using a two-wire waveguide and a paper grating,” Opt. Lett. 38(16), 3089–3092 (2013).
    [Crossref] [PubMed]
  27. H.-W. Chen, C.-M. Chiu, J.-L. Kuo, P.-J. Chiang, H.-C. Chang, and C.-K. Sun, “Subwavelength dielectric-fiber based terahertz coupler,” J. Lightwave Technol. 27(11), 1489–1495 (2009).
    [Crossref]
  28. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
    [Crossref] [PubMed]
  29. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
    [Crossref] [PubMed]
  30. J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y. F. Tsai, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz pipe-waveguide-based directional couplers,” Opt. Express 19(27), 26883–26890 (2011).
    [Crossref] [PubMed]
  31. C.-H. Lai, C.-K. Sun, and H.-C. Chang, “Terahertz antiresonant-reflecting-hollow-waveguide-based directional coupler operating at antiresonant frequencies,” Opt. Lett. 36(18), 3590–3592 (2011).
    [Crossref] [PubMed]
  32. C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared. Millim. Terahz. Waves 31, 214–220 (2010).
  33. S. Li, H. Zhang, Y. Hou, J. Bai, W. Liu, and S. Chang, “Terahertz polarization splitter based on orthogonal microstructure dual-core photonic crystal fiber,” Appl. Opt. 52(14), 3305–3310 (2013).
    [Crossref] [PubMed]
  34. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [Crossref] [PubMed]
  35. J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29(21), 2473–2475 (2004).
    [Crossref] [PubMed]
  36. J. Lægsgaard, “Directional coupling in twin-core photonic bandgap fibers,” Opt. Lett. 30(24), 3281–3283 (2005).
    [Crossref] [PubMed]
  37. Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15(8), 4795–4803 (2007).
    [Crossref] [PubMed]
  38. T.-F. Tseng, C.-H. Lai, J.-T. Lu, Y.-C. Htruuu, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Investigation on Strong Coupling Behaviors of THz Subwavelength Directional Couplers,” IEEE Photon. J. 4(6), 2307–2314 (2012).
  39. S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4(4), 1178–1187 (2012).
    [Crossref]
  40. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  41. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
    [Crossref] [PubMed]
  42. W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
    [Crossref]
  43. B. J. Mangan, J. Arriaga, T. A. Birks, J. C. Knight, and P. S. Russell, “Fundamental-mode cutoff in a photonic crystal fiber with a depressed-index core,” Opt. Lett. 26(19), 1469–1471 (2001).
    [Crossref] [PubMed]
  44. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  45. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [Crossref] [PubMed]
  46. G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
    [Crossref] [PubMed]
  47. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
    [Crossref]
  48. C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
    [Crossref] [PubMed]
  49. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  50. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edition (Princeton University Press, 2008.)

2013 (5)

2012 (4)

T.-F. Tseng, C.-H. Lai, J.-T. Lu, Y.-C. Htruuu, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Investigation on Strong Coupling Behaviors of THz Subwavelength Directional Couplers,” IEEE Photon. J. 4(6), 2307–2314 (2012).

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4(4), 1178–1187 (2012).
[Crossref]

S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, “Characterization and modeling of Bragg gratings written in polymer fiber for use as filters in the THz region,” Opt. Express 20(9), 9564–9571 (2012).
[Crossref] [PubMed]

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20(28), 29507–29517 (2012).
[Crossref] [PubMed]

2011 (15)

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19(26), B848–B861 (2011).
[Crossref] [PubMed]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photon. Rev. 5(1), 124–166 (2011).
[Crossref]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011).
[Crossref] [PubMed]

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
[Crossref]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
[Crossref] [PubMed]

E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett. 36(10), 1782–1784 (2011).
[Crossref] [PubMed]

Z. Wu, W. R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express 19(5), 3962–3972 (2011).
[Crossref] [PubMed]

J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y. F. Tsai, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz pipe-waveguide-based directional couplers,” Opt. Express 19(27), 26883–26890 (2011).
[Crossref] [PubMed]

C.-H. Lai, C.-K. Sun, and H.-C. Chang, “Terahertz antiresonant-reflecting-hollow-waveguide-based directional coupler operating at antiresonant frequencies,” Opt. Lett. 36(18), 3590–3592 (2011).
[Crossref] [PubMed]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref] [PubMed]

A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogiaty, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28(4), 896–907 (2011).
[Crossref]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

2010 (4)

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[Crossref]

C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared. Millim. Terahz. Waves 31, 214–220 (2010).

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[Crossref] [PubMed]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref] [PubMed]

2009 (5)

2008 (4)

2007 (3)

2006 (1)

2005 (1)

2004 (3)

2003 (1)

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

2001 (1)

1997 (1)

Abbott, D.

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[Crossref] [PubMed]

Adam, A. J. L.

Afshar V, S.

Allard, J.-F.

Al-Naib, I.

C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared. Millim. Terahz. Waves 31, 214–220 (2010).

Anthony, J.

Argyros, A.

Arriaga, J.

Atakaramians, S.

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[Crossref] [PubMed]

Auguste, J.-L.

Bai, J.

Bang, O.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20(28), 29507–29517 (2012).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[Crossref]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29(21), 2473–2475 (2004).
[Crossref] [PubMed]

Bao, H.

Birks, T. A.

Bjarklev, A.

Blondy, J.-M.

Bock, W. J.

Chan, H. P.

Chang, H. C.

Chang, H.-C.

Chang, S.

Chee, K.

C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared. Millim. Terahz. Waves 31, 214–220 (2010).

Chen, H.

T.-F. Tseng, C.-H. Lai, J.-T. Lu, Y.-C. Htruuu, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Investigation on Strong Coupling Behaviors of THz Subwavelength Directional Couplers,” IEEE Photon. J. 4(6), 2307–2314 (2012).

J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y. F. Tsai, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz pipe-waveguide-based directional couplers,” Opt. Express 19(27), 26883–26890 (2011).
[Crossref] [PubMed]

Chen, H. W.

Chen, H.-W.

Chen, L. J.

Chen, L.-J.

Chiang, P.-J.

Chinifooroshan, Y.

Chiu, C.-M.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

Chow, Y. T.

Chung, P. S.

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photon. Rev. 5(1), 124–166 (2011).
[Crossref]

de Sterke, C. M.

Du, J.

Dubois, C.

Dunn, S. C.

Dupuis, A.

Eggleton, B. J.

Emiliyanov, G.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

Estacio, E.

Férachou, D.

Fischer, B. M.

Gehm, M. E.

George, R.

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

Harrington, J. A.

Hassani, A.

Hoiby, P. E.

Høiby, P. E.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Hou, Y.

Hsueh, Y.-C.

Htruuu, Y.-C.

T.-F. Tseng, C.-H. Lai, J.-T. Lu, Y.-C. Htruuu, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Investigation on Strong Coupling Behaviors of THz Subwavelength Directional Couplers,” IEEE Photon. J. 4(6), 2307–2314 (2012).

Huang, Y.-J.

Humbert, G.

Hwang, Y. J.

Hwang, Y.-J.

T.-F. Tseng, C.-H. Lai, J.-T. Lu, Y.-C. Htruuu, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Investigation on Strong Coupling Behaviors of THz Subwavelength Directional Couplers,” IEEE Photon. J. 4(6), 2307–2314 (2012).

Jensen, J. B.

Jepsen, P. U.

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

Jördens, C.

C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared. Millim. Terahz. Waves 31, 214–220 (2010).

Kalli, K.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Kao, T. F.

Khan, L.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

Kjaer, E. M.

Knight, J. C.

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photon. Rev. 5(1), 124–166 (2011).
[Crossref]

C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared. Millim. Terahz. Waves 31, 214–220 (2010).

Kuhlmey, B. T.

Kuo, J.-L.

Lægsgaard, J.

Laegsgaard, J.

Lai, C.-H.

Large, M. C. J.

Leonhardt, R.

Leon-Saval, S. G.

Li, S.

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett. 32(9), 1017–1019 (2007).
[Crossref] [PubMed]

Lindvold, L.

Litchinitser, N. M.

Liu, D.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4(4), 1178–1187 (2012).
[Crossref]

Liu, T.-A.

Liu, W.

Liu, Y.

Lu, J. Y.

Lu, J.-T.

T.-F. Tseng, C.-H. Lai, J.-T. Lu, Y.-C. Htruuu, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Investigation on Strong Coupling Behaviors of THz Subwavelength Directional Couplers,” IEEE Photon. J. 4(6), 2307–2314 (2012).

J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y. F. Tsai, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz pipe-waveguide-based directional couplers,” Opt. Express 19(27), 26883–26890 (2011).
[Crossref] [PubMed]

Lu, J.-Y.

Luk, K. M.

Mangan, B. J.

Markos, C.

Markov, A.

Mazhorova, A.

McPhedran, R. C.

Mittleman, D. M.

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Monro, T. M.

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[Crossref] [PubMed]

Morris, D.

Mueller, E.

Nagel, M.

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

Ng, W. R.

Nguema, E.

Nielsen, K.

Pan, C.-L.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett. 32(9), 1017–1019 (2007).
[Crossref] [PubMed]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

Pedersen, L. H.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

Pedersen, P.

Peik, S.

C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared. Millim. Terahz. Waves 31, 214–220 (2010).

Peng, J.-L.

Planken, P. C. M.

Pobre, R.

Ponseca, C. S.

Pupeza, I.

C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared. Millim. Terahz. Waves 31, 214–220 (2010).

Rasmussen, H. K.

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20(28), 29507–29517 (2012).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

Reekie, L.

Rozé, M.

Russell, P. S.

Russell, P. St. J.

Sarukura, N.

Shahraam, A. V.

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

Shum, P.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4(4), 1178–1187 (2012).
[Crossref]

Skorobogatiy, M.

Skorobogiaty, M.

Stefani, A.

Stoeffler, K.

Sun, C. K.

Sun, C.-K.

Taru, T.

Town, G. E.

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[Crossref]

Tripathi, S. M.

Tsai, Y. F.

Tsai, Y.-F.

T.-F. Tseng, C.-H. Lai, J.-T. Lu, Y.-C. Htruuu, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Investigation on Strong Coupling Behaviors of THz Subwavelength Directional Couplers,” IEEE Photon. J. 4(6), 2307–2314 (2012).

Tseng, T.-F.

T.-F. Tseng, C.-H. Lai, J.-T. Lu, Y.-C. Htruuu, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Investigation on Strong Coupling Behaviors of THz Subwavelength Directional Couplers,” IEEE Photon. J. 4(6), 2307–2314 (2012).

J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y. F. Tsai, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz pipe-waveguide-based directional couplers,” Opt. Express 19(27), 26883–26890 (2011).
[Crossref] [PubMed]

Ung, B.

Usner, B.

van Eijkelenborg, M. A.

Vlachos, K.

Walther, M.

Wang, K. L.

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Wang, Z.

Webb, D. J.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Wenke, G.

C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared. Millim. Terahz. Waves 31, 214–220 (2010).

White, T. P.

Wu, D. K. C.

Wu, Z.

Xia, L.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4(4), 1178–1187 (2012).
[Crossref]

Xin, H.

Yan, G.

You, B.

Yu, C.-P.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Yu, X.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4(4), 1178–1187 (2012).
[Crossref]

Yuan, W.

Zhang, H.

Zhang, S.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4(4), 1178–1187 (2012).
[Crossref]

Zhang, Y.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4(4), 1178–1187 (2012).
[Crossref]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4(4), 1178–1187 (2012).
[Crossref]

Zhou, S. F.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[Crossref]

S. Atakaramians, A. V. Shahraam, M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent fields for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98(12), 121104 (2011).
[Crossref]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Electron. Lett. (1)

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[Crossref]

IEEE Photon. J. (2)

T.-F. Tseng, C.-H. Lai, J.-T. Lu, Y.-C. Htruuu, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Investigation on Strong Coupling Behaviors of THz Subwavelength Directional Couplers,” IEEE Photon. J. 4(6), 2307–2314 (2012).

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J. 4(4), 1178–1187 (2012).
[Crossref]

IEEE Sens. J. (1)

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[Crossref]

J. Infrared. Millim. Terahz. Waves (1)

C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared. Millim. Terahz. Waves 31, 214–220 (2010).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Laser & Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser & Photon. Rev. 5(1), 124–166 (2011).
[Crossref]

Nature (1)

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Opt. Express (18)

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[Crossref] [PubMed]

S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, “Characterization and modeling of Bragg gratings written in polymer fiber for use as filters in the THz region,” Opt. Express 20(9), 9564–9571 (2012).
[Crossref] [PubMed]

A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
[Crossref] [PubMed]

J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y. F. Tsai, Y. J. Hwang, H. C. Chang, and C. K. Sun, “Terahertz pipe-waveguide-based directional couplers,” Opt. Express 19(27), 26883–26890 (2011).
[Crossref] [PubMed]

Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15(8), 4795–4803 (2007).
[Crossref] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[Crossref] [PubMed]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
[Crossref] [PubMed]

Z. Wu, W. R. Ng, M. E. Gehm, and H. Xin, “Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping,” Opt. Express 19(5), 3962–3972 (2011).
[Crossref] [PubMed]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19(26), B848–B861 (2011).
[Crossref] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[Crossref] [PubMed]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: A novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[Crossref] [PubMed]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref] [PubMed]

M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[Crossref] [PubMed]

H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20(28), 29507–29517 (2012).
[Crossref] [PubMed]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, and O. Bang, “High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees,” Opt. Express 21(4), 4758–4765 (2013).
[Crossref] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

Opt. Lett. (16)

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

B. J. Mangan, J. Arriaga, T. A. Birks, J. C. Knight, and P. S. Russell, “Fundamental-mode cutoff in a photonic crystal fiber with a depressed-index core,” Opt. Lett. 26(19), 1469–1471 (2001).
[Crossref] [PubMed]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[Crossref] [PubMed]

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett. 32(9), 1017–1019 (2007).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011).
[Crossref] [PubMed]

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[Crossref] [PubMed]

E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett. 36(10), 1782–1784 (2011).
[Crossref] [PubMed]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33(9), 902–904 (2008).
[Crossref] [PubMed]

J. Laegsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29(21), 2473–2475 (2004).
[Crossref] [PubMed]

J. Lægsgaard, “Directional coupling in twin-core photonic bandgap fibers,” Opt. Lett. 30(24), 3281–3283 (2005).
[Crossref] [PubMed]

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[Crossref] [PubMed]

C.-H. Lai, C.-K. Sun, and H.-C. Chang, “Terahertz antiresonant-reflecting-hollow-waveguide-based directional coupler operating at antiresonant frequencies,” Opt. Lett. 36(18), 3590–3592 (2011).
[Crossref] [PubMed]

K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett. 35(17), 2879–2881 (2010).
[Crossref] [PubMed]

S. F. Zhou, L. Reekie, H. P. Chan, K. M. Luk, and Y. T. Chow, “Terahertz filter with tailored passband using multiple phase shifted fiber Bragg gratings,” Opt. Lett. 38(3), 260–262 (2013).
[Crossref] [PubMed]

G. Yan, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, and M. Skorobogatiy, “Low-loss terahertz waveguide Bragg grating using a two-wire waveguide and a paper grating,” Opt. Lett. 38(16), 3089–3092 (2013).
[Crossref] [PubMed]

Sensors (Basel) (1)

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edition (Princeton University Press, 2008.)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Cross section of the air-doped dual-core coupler. Dark regions represent air and purple regions represent air-doped cores. Λ, d and Λc, dc represent the pitch and hole diameter of the cladding and two cores, respectively. Dc is the effective core diameter. (b) Electric field profiles at 0.9 THz (y polarization) of even and odd super-modes in the x-y plane (top two figures) and along the x axis with y = 0 (bottom two figures).
Fig. 2
Fig. 2 (a) Effective index of the even and odd modes versus frequency for the air-doped coupler (Λ = 682.5 µm, d/Λ = 0.52, Λc = 102.375 µm, dcc = 0.25) and un-doped solid-core coupler (Λ = 682.5 µm, d/Λ = 0.52). Solid red curve is the calculated FSM. Green short vertical solid line represent the cross point between the odd mode and cladding mode of the air-doped coupler, corresponding to the fundamental-mode cut-off frequency. (b) Coupling lengths of the air-doped (black dashed line) and un-doped solid-core (black solid line) coupler versus frequency. Blue solid curve represents the frequency dependent total loss of the air-doped coupler.
Fig. 3
Fig. 3 (a) Coupling length versus frequency for fixed d/Λ = 0.52, Λ = 682.5 µm, and Λc = 112.875 µm and varying degree of down-doping dcc. Red and green dashed lines represent the 3-dB bandwidth of the coupler with dcc = 0.22 and 0.2425, respectively. (b) Maximum FOM as a function of dcc (only cases with B>0.01 THz are plotted). Inset is FOM versus frequency for the different dcc.
Fig. 4
Fig. 4 Characteristics of the coupler with optimum down-doping dcc (found with resolution 0.0025 as in Fig. 3) for fixed Λc = 112.875 µm and Λ = 682.5 µm. (a) Frequency profile of the FOM at optimum dcc, for selected values of d/Λ (b) Maximum FOM and bandwidth B at optimum dcc (c) Center frequency and 3-dB coupling length at optimum dcc.
Fig. 5
Fig. 5 (a) Maximum Bandwidth and (b) Maximum FOM (B>0.01 THz) of the coupler with different values of d/Λ (Λ = 682.5 µm) as a function of dccc = 112.875 µm). Six white dashed lines in (a) are center frequency at 1.2, 1.0, 0.9, 0.8, 0.7 and 0.6 THz respectively. Four white dashed lines in (b) are device loss of 3-dB coupler at 25, 15, 10, 5 dB, respectively.
Fig. 6
Fig. 6 Characteristics of the coupler with optimum down-doping dcc (found with resolution 0.0025 as in Fig. 3) versus relative cladding hole diameter d/Λ for fixed Λ = 682.5 µm. (a) Optimum FOM and 3-dB bandwidth at optimum FOM, and (b) Center frequency and device loss at optimum FOM for Λc = 91.875 µm (black lines), 102.375 µm (red lines), 112.875 µm (green lines), 123.375 µm (dark blue lines) and 133.875 µm (light blue lines).
Fig. 7
Fig. 7 Ratio FOM(m)/FOM(1) versus scaling factor m for optimum coupler with Λ = 682.5 µm and Λc = 102.375 µm (red curves in Fig. 6) and two different relative hole sizes d/Λ = 0.44 and 0.65. Data represented by open circles and stars are calculated by using COMSOl, while data represented by solid and dashed lines are calculated based on the scaling method. Black color represents calculations taking into account the total device loss, while red color represents calculations where confinement loss has been neglected.
Fig. 8
Fig. 8 Optimum FOM versus d/Λ (Λ = 682.5 µm and Λc = 102.375 µm at m = 1) and scaling factor m, calculated using the scaling method with confinement loss taken into account. Black dashed lines have fixed center frequency from 0.6 to 1.4 THz with a step of 0.1 THz. White dashed lines have fixed 3-dB bandwidth from 0.15 to 0.4 THz with a step of 0.05 THz (right to left).
Fig. 9
Fig. 9 Red and blue dots and gray circles show the effective index of all calculated modes with a core power ratio larger than 2% (y polarization) for the optimum coupler with a center frequency of 1 THz, for which d/Λ = 0.65, Λ = 498.7369 µm, Λc = 74.8105 µm, and dc = 32.5426. Red dots represent even superrmodes and blue dots represent odd supermodes. The solid black curve shows the index of the FSM. The three insets between two green lines show the electric field profiles at 1 THz (y polarization) of the first three highest effective index modes.

Tables (1)

Tables Icon

Table 1 Performance of the coupler with optimum geometric structure parameters (dc, Λc, d, Λ) with and without fabrication errors of ± 1%

Metrics