M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: High-capacity, resist modeling, and production-ready mask solution,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81663M.

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, and T. Fühner, “Evaluation of various compact mask and imaging models for the efficient simulation of mask topography effects in immersion lithography,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 832609.

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, T. Fühner, F. Shao, S. Limmer, and D. Fey, “Accuracy and performance of 3D mask models in optical projection lithography,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730O.

[CrossRef]

H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, and T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014).

[CrossRef]

T. Dam, V. Tolani, P. Hu, K.-H. Baik, L. Pang, B. Gleason, S. D. Slonaker, and J. K. Tyminski, “Source-mask optimization (SMO): from theory to practice,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 764028.

[CrossRef]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 76401J.

[CrossRef]

J.-C. Yu, P. Yu, and H.-Y. Chao, “Library-based illumination synthesis for critical CMOS patterning,” IEEE Trans. Image Process. 22, 2811–2821 (2013).

[CrossRef]
[PubMed]

J. Choi, I.-Y. Kang, J. S. Park, I. K. Shin, and C.-U. Jeon, “Manufacurability of computation lithography mask: Current limit and requirements for sub-20nm node,” in Optical Microlithography XXVI, W. Conley, ed. (2013), vol. 8683 of Proc. SPIE, p. 86830L.

[CrossRef]

G.-S. Yoon, H.-B. Kim, J.-W. Lee, S.-W. Choi, and W.-S. Han, “Phase-shifted assist feature OPC for sub-45nm node optical lithography,” in Optical Microlithography XX, D. G. Flagello, ed. (2007), vol. 6520 of Proc. SPIE, p. 65201A.

[CrossRef]

T. H. Coskun, H. Dai, H.-T. Huang, V. Kamat, and C. Ngai, “Accounting for mask topography effects in source-mask optimization for advanced nodes,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730P.

[CrossRef]

T. H. Coskun, H. Dai, H.-T. Huang, V. Kamat, and C. Ngai, “Accounting for mask topography effects in source-mask optimization for advanced nodes,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730P.

[CrossRef]

T. Dam, V. Tolani, P. Hu, K.-H. Baik, L. Pang, B. Gleason, S. D. Slonaker, and J. K. Tyminski, “Source-mask optimization (SMO): from theory to practice,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 764028.

[CrossRef]

H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, and T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014).

[CrossRef]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 76401J.

[CrossRef]

A. Erdmann, F. Shao, P. Evanschitzky, and T. Fühner, “Mask-topography-induced phase effects and wave aberrations in optical and extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 28, C6J1–C6J7 (2010).

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, T. Fühner, F. Shao, S. Limmer, and D. Fey, “Accuracy and performance of 3D mask models in optical projection lithography,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730O.

[CrossRef]

T. Fühner, P. Evanschitzky, and A. Erdmann, “Mutual source, mask and projector pupil optimization,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260I.

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, and T. Fühner, “Evaluation of various compact mask and imaging models for the efficient simulation of mask topography effects in immersion lithography,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 832609.

[CrossRef]

F. Shao, P. Evanschitzky, D. Reibold, and A. Erdmann, “Fast rigorous simulation of mask diffraction using the waveguide method with parallelized decomposition technique,” in 24th European Mask and Lithography Conference, U. F. W. Behringer, ed. (2008), vol. 6792 of Proc. SPIE, p. 679206.

[CrossRef]

P. Evanschitzky, F. Shao, T. Fühner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 797329.

[CrossRef]

A. Erdmann, F. Shao, P. Evanschitzky, and T. Fühner, “Mask-topography-induced phase effects and wave aberrations in optical and extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 28, C6J1–C6J7 (2010).

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, T. Fühner, F. Shao, S. Limmer, and D. Fey, “Accuracy and performance of 3D mask models in optical projection lithography,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730O.

[CrossRef]

T. Fühner, P. Evanschitzky, and A. Erdmann, “Mutual source, mask and projector pupil optimization,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260I.

[CrossRef]

F. Shao, P. Evanschitzky, D. Reibold, and A. Erdmann, “Fast rigorous simulation of mask diffraction using the waveguide method with parallelized decomposition technique,” in 24th European Mask and Lithography Conference, U. F. W. Behringer, ed. (2008), vol. 6792 of Proc. SPIE, p. 679206.

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, and T. Fühner, “Evaluation of various compact mask and imaging models for the efficient simulation of mask topography effects in immersion lithography,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 832609.

[CrossRef]

P. Evanschitzky, F. Shao, T. Fühner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 797329.

[CrossRef]

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: High-capacity, resist modeling, and production-ready mask solution,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81663M.

[CrossRef]

M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79731B.

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, T. Fühner, F. Shao, S. Limmer, and D. Fey, “Accuracy and performance of 3D mask models in optical projection lithography,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730O.

[CrossRef]

J. Finders and T. Hollink, “Mask 3D effects: Impact on imaging and placement,” in 27th European Mask and Lithography Conference, U. F. Behringer, ed. (2011), vol. 7985 of Proc. SPIE, p. 79850I.

[CrossRef]

A. Erdmann, F. Shao, P. Evanschitzky, and T. Fühner, “Mask-topography-induced phase effects and wave aberrations in optical and extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 28, C6J1–C6J7 (2010).

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, T. Fühner, F. Shao, S. Limmer, and D. Fey, “Accuracy and performance of 3D mask models in optical projection lithography,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730O.

[CrossRef]

T. Fühner, P. Evanschitzky, and A. Erdmann, “Mutual source, mask and projector pupil optimization,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260I.

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, and T. Fühner, “Evaluation of various compact mask and imaging models for the efficient simulation of mask topography effects in immersion lithography,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 832609.

[CrossRef]

P. Evanschitzky, F. Shao, T. Fühner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 797329.

[CrossRef]

T. Dam, V. Tolani, P. Hu, K.-H. Baik, L. Pang, B. Gleason, S. D. Slonaker, and J. K. Tyminski, “Source-mask optimization (SMO): from theory to practice,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 764028.

[CrossRef]

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: High-capacity, resist modeling, and production-ready mask solution,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81663M.

[CrossRef]

G.-S. Yoon, H.-B. Kim, J.-W. Lee, S.-W. Choi, and W.-S. Han, “Phase-shifted assist feature OPC for sub-45nm node optical lithography,” in Optical Microlithography XX, D. G. Flagello, ed. (2007), vol. 6520 of Proc. SPIE, p. 65201A.

[CrossRef]

H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, and T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014).

[CrossRef]

J. Finders and T. Hollink, “Mask 3D effects: Impact on imaging and placement,” in 27th European Mask and Lithography Conference, U. F. Behringer, ed. (2011), vol. 7985 of Proc. SPIE, p. 79850I.

[CrossRef]

T. Dam, V. Tolani, P. Hu, K.-H. Baik, L. Pang, B. Gleason, S. D. Slonaker, and J. K. Tyminski, “Source-mask optimization (SMO): from theory to practice,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 764028.

[CrossRef]

T. H. Coskun, H. Dai, H.-T. Huang, V. Kamat, and C. Ngai, “Accounting for mask topography effects in source-mask optimization for advanced nodes,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730P.

[CrossRef]

H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, and T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014).

[CrossRef]

J. Choi, I.-Y. Kang, J. S. Park, I. K. Shin, and C.-U. Jeon, “Manufacurability of computation lithography mask: Current limit and requirements for sub-20nm node,” in Optical Microlithography XXVI, W. Conley, ed. (2013), vol. 8683 of Proc. SPIE, p. 86830L.

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]
[PubMed]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).

[CrossRef]
[PubMed]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010).

[CrossRef]

T. H. Coskun, H. Dai, H.-T. Huang, V. Kamat, and C. Ngai, “Accounting for mask topography effects in source-mask optimization for advanced nodes,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730P.

[CrossRef]

J. Choi, I.-Y. Kang, J. S. Park, I. K. Shin, and C.-U. Jeon, “Manufacurability of computation lithography mask: Current limit and requirements for sub-20nm node,” in Optical Microlithography XXVI, W. Conley, ed. (2013), vol. 8683 of Proc. SPIE, p. 86830L.

[CrossRef]

G.-S. Yoon, H.-B. Kim, J.-W. Lee, S.-W. Choi, and W.-S. Han, “Phase-shifted assist feature OPC for sub-45nm node optical lithography,” in Optical Microlithography XX, D. G. Flagello, ed. (2007), vol. 6520 of Proc. SPIE, p. 65201A.

[CrossRef]

H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, and T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014).

[CrossRef]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 76401J.

[CrossRef]

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: High-capacity, resist modeling, and production-ready mask solution,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81663M.

[CrossRef]

X. Wu, S. Liu, J. Li, and E. Y. Lam, “Efficient source mask optimization with Zernike polynomial functions for source representation,” Opt. Express 22, 3924–3937 (2014).

[CrossRef]
[PubMed]

J. Li, S. Liu, and E. Y. Lam, “Efficient source and mask optimization with augmented Lagrangian methods in optical lithography,” Opt. Express 21, 8076–8090 (2013).

[CrossRef]
[PubMed]

J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express 20, 21792–21804 (2012).

[CrossRef]
[PubMed]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]
[PubMed]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).

[CrossRef]
[PubMed]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010).

[CrossRef]

E. Y. Lam and A. K. Wong, “Nebulous hotspot and algorithm variability in computation lithography,” J. Micro/Nanolith. MEMS MOEMS 9, 033002 (2010).

[CrossRef]

E. Y. Lam and A. K. Wong, “Computation lithography: Virtual reality and virtual virtuality,” Opt. Express 17, 12259–12268 (2009).

[CrossRef]
[PubMed]

G.-S. Yoon, H.-B. Kim, J.-W. Lee, S.-W. Choi, and W.-S. Han, “Phase-shifted assist feature OPC for sub-45nm node optical lithography,” in Optical Microlithography XX, D. G. Flagello, ed. (2007), vol. 6520 of Proc. SPIE, p. 65201A.

[CrossRef]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 76401J.

[CrossRef]

X. Wu, S. Liu, J. Li, and E. Y. Lam, “Efficient source mask optimization with Zernike polynomial functions for source representation,” Opt. Express 22, 3924–3937 (2014).

[CrossRef]
[PubMed]

J. Li, S. Liu, and E. Y. Lam, “Efficient source and mask optimization with augmented Lagrangian methods in optical lithography,” Opt. Express 21, 8076–8090 (2013).

[CrossRef]
[PubMed]

J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express 20, 21792–21804 (2012).

[CrossRef]
[PubMed]

V. Agudelo, P. Evanschitzky, A. Erdmann, T. Fühner, F. Shao, S. Limmer, and D. Fey, “Accuracy and performance of 3D mask models in optical projection lithography,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730O.

[CrossRef]

X. Wu, S. Liu, J. Li, and E. Y. Lam, “Efficient source mask optimization with Zernike polynomial functions for source representation,” Opt. Express 22, 3924–3937 (2014).

[CrossRef]
[PubMed]

J. Li, S. Liu, and E. Y. Lam, “Efficient source and mask optimization with augmented Lagrangian methods in optical lithography,” Opt. Express 21, 8076–8090 (2013).

[CrossRef]
[PubMed]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 76401J.

[CrossRef]

C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley, 2007, Chap. 3).

[CrossRef]

V. N. Mahajan, Aberration Theory Made Simple, 2 (SPIE, 2011, Chap. 1).

M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79731B.

[CrossRef]

H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, and T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014).

[CrossRef]

H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, and T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014).

[CrossRef]

A. Poonawala and P. Milanfar, “Mask design for optical microlithography — an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]
[PubMed]

H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, and T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014).

[CrossRef]

A. K. Wong and A. R. Neureuther, “Mask topography effects in projection printing of phase phifting masks,” IEEE Trans. on Electron Devices 41, 895–902 (1994).

[CrossRef]

T. H. Coskun, H. Dai, H.-T. Huang, V. Kamat, and C. Ngai, “Accounting for mask topography effects in source-mask optimization for advanced nodes,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730P.

[CrossRef]

J. Nocedal and S. J. Wright, Numerical Optimization, 2 (Springer, 2006, Chap. 5).

T. Dam, V. Tolani, P. Hu, K.-H. Baik, L. Pang, B. Gleason, S. D. Slonaker, and J. K. Tyminski, “Source-mask optimization (SMO): from theory to practice,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 764028.

[CrossRef]

J. Choi, I.-Y. Kang, J. S. Park, I. K. Shin, and C.-U. Jeon, “Manufacurability of computation lithography mask: Current limit and requirements for sub-20nm node,” in Optical Microlithography XXVI, W. Conley, ed. (2013), vol. 8683 of Proc. SPIE, p. 86830L.

[CrossRef]

A. Poonawala and P. Milanfar, “Mask design for optical microlithography — an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]
[PubMed]

F. Shao, P. Evanschitzky, D. Reibold, and A. Erdmann, “Fast rigorous simulation of mask diffraction using the waveguide method with parallelized decomposition technique,” in 24th European Mask and Lithography Conference, U. F. W. Behringer, ed. (2008), vol. 6792 of Proc. SPIE, p. 679206.

[CrossRef]

M. K. Sears and B. Smith, “Modeling the effects of pupil-manipulated spherical aberration in optical nanolithography,” J. Micro/Nanolith., MEMS, MOEMS 12, 013008 (2013).

[CrossRef]

M. K. Sears, J. Bekaert, and B. W. Smith, “Lens wavefront compensation for 3D photomask effects in subwavelength optical lithography,” Appl. Opt. 52, 314–322 (2013).

[CrossRef]
[PubMed]

M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79731B.

[CrossRef]

A. Erdmann, F. Shao, P. Evanschitzky, and T. Fühner, “Mask-topography-induced phase effects and wave aberrations in optical and extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 28, C6J1–C6J7 (2010).

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, T. Fühner, F. Shao, S. Limmer, and D. Fey, “Accuracy and performance of 3D mask models in optical projection lithography,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730O.

[CrossRef]

F. Shao, P. Evanschitzky, D. Reibold, and A. Erdmann, “Fast rigorous simulation of mask diffraction using the waveguide method with parallelized decomposition technique,” in 24th European Mask and Lithography Conference, U. F. W. Behringer, ed. (2008), vol. 6792 of Proc. SPIE, p. 679206.

[CrossRef]

P. Evanschitzky, F. Shao, T. Fühner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 797329.

[CrossRef]

J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express 20, 21792–21804 (2012).

[CrossRef]
[PubMed]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]
[PubMed]

J. Choi, I.-Y. Kang, J. S. Park, I. K. Shin, and C.-U. Jeon, “Manufacurability of computation lithography mask: Current limit and requirements for sub-20nm node,” in Optical Microlithography XXVI, W. Conley, ed. (2013), vol. 8683 of Proc. SPIE, p. 86830L.

[CrossRef]

H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, and T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014).

[CrossRef]

T. Dam, V. Tolani, P. Hu, K.-H. Baik, L. Pang, B. Gleason, S. D. Slonaker, and J. K. Tyminski, “Source-mask optimization (SMO): from theory to practice,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 764028.

[CrossRef]

M. K. Sears and B. Smith, “Modeling the effects of pupil-manipulated spherical aberration in optical nanolithography,” J. Micro/Nanolith., MEMS, MOEMS 12, 013008 (2013).

[CrossRef]

M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79731B.

[CrossRef]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 76401J.

[CrossRef]

H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, and T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014).

[CrossRef]

T. Dam, V. Tolani, P. Hu, K.-H. Baik, L. Pang, B. Gleason, S. D. Slonaker, and J. K. Tyminski, “Source-mask optimization (SMO): from theory to practice,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 764028.

[CrossRef]

T. Dam, V. Tolani, P. Hu, K.-H. Baik, L. Pang, B. Gleason, S. D. Slonaker, and J. K. Tyminski, “Source-mask optimization (SMO): from theory to practice,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 764028.

[CrossRef]

E. Y. Lam and A. K. Wong, “Nebulous hotspot and algorithm variability in computation lithography,” J. Micro/Nanolith. MEMS MOEMS 9, 033002 (2010).

[CrossRef]

E. Y. Lam and A. K. Wong, “Computation lithography: Virtual reality and virtual virtuality,” Opt. Express 17, 12259–12268 (2009).

[CrossRef]
[PubMed]

A. K. Wong and A. R. Neureuther, “Mask topography effects in projection printing of phase phifting masks,” IEEE Trans. on Electron Devices 41, 895–902 (1994).

[CrossRef]

A. K. Wong, Optical Imaging in Projection Microlithography (SPIE, 2005, Chap. 2).

[CrossRef]

J. Nocedal and S. J. Wright, Numerical Optimization, 2 (Springer, 2006, Chap. 5).

G.-S. Yoon, H.-B. Kim, J.-W. Lee, S.-W. Choi, and W.-S. Han, “Phase-shifted assist feature OPC for sub-45nm node optical lithography,” in Optical Microlithography XX, D. G. Flagello, ed. (2007), vol. 6520 of Proc. SPIE, p. 65201A.

[CrossRef]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 76401J.

[CrossRef]

J.-C. Yu, P. Yu, and H.-Y. Chao, “Library-based illumination synthesis for critical CMOS patterning,” IEEE Trans. Image Process. 22, 2811–2821 (2013).

[CrossRef]
[PubMed]

J.-C. Yu, P. Yu, and H.-Y. Chao, “Library-based illumination synthesis for critical CMOS patterning,” IEEE Trans. Image Process. 22, 2811–2821 (2013).

[CrossRef]
[PubMed]

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 76401J.

[CrossRef]

A. Poonawala and P. Milanfar, “Mask design for optical microlithography — an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]
[PubMed]

J.-C. Yu, P. Yu, and H.-Y. Chao, “Library-based illumination synthesis for critical CMOS patterning,” IEEE Trans. Image Process. 22, 2811–2821 (2013).

[CrossRef]
[PubMed]

A. K. Wong and A. R. Neureuther, “Mask topography effects in projection printing of phase phifting masks,” IEEE Trans. on Electron Devices 41, 895–902 (1994).

[CrossRef]

E. Y. Lam and A. K. Wong, “Nebulous hotspot and algorithm variability in computation lithography,” J. Micro/Nanolith. MEMS MOEMS 9, 033002 (2010).

[CrossRef]

H. Aoyama, Y. Mizuno, N. Hirayanagi, N. Kita, R. Matsui, H. Izumi, K. Tajima, J. Siebert, W. Demmerle, and T. Matsuyama, “Impact of realistic source shape and flexibility on source mask optimization,” J. Micro/Nanolith. MEMS MOEMS 13, 011005 (2014).

[CrossRef]

M. K. Sears and B. Smith, “Modeling the effects of pupil-manipulated spherical aberration in optical nanolithography,” J. Micro/Nanolith., MEMS, MOEMS 12, 013008 (2013).

[CrossRef]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010).

[CrossRef]

X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, “Pixelated source and mask optimization for immersion lithography,” J. Opt. Soc. Am. A 30, 112–123 (2013).

[CrossRef]

M. G. Moharam, E. B. Gram, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

A. Erdmann, F. Shao, P. Evanschitzky, and T. Fühner, “Mask-topography-induced phase effects and wave aberrations in optical and extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 28, C6J1–C6J7 (2010).

[CrossRef]

E. Y. Lam and A. K. Wong, “Computation lithography: Virtual reality and virtual virtuality,” Opt. Express 17, 12259–12268 (2009).

[CrossRef]
[PubMed]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust level-set-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]
[PubMed]

X. Wu, S. Liu, J. Li, and E. Y. Lam, “Efficient source mask optimization with Zernike polynomial functions for source representation,” Opt. Express 22, 3924–3937 (2014).

[CrossRef]
[PubMed]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).

[CrossRef]
[PubMed]

J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express 20, 21792–21804 (2012).

[CrossRef]
[PubMed]

J. Li, S. Liu, and E. Y. Lam, “Efficient source and mask optimization with augmented Lagrangian methods in optical lithography,” Opt. Express 21, 8076–8090 (2013).

[CrossRef]
[PubMed]

J. Nocedal and S. J. Wright, Numerical Optimization, 2 (Springer, 2006, Chap. 5).

Y. Deng, Y. Zou, K. Yoshimoto, Y. Ma, C. E. Tabery, J. Kye, L. Capodieci, and H. J. Levinson, “Considerations in source-mask optimization for logic applications,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 76401J.

[CrossRef]

V. N. Mahajan, Aberration Theory Made Simple, 2 (SPIE, 2011, Chap. 1).

C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley, 2007, Chap. 3).

[CrossRef]

P. Evanschitzky, F. Shao, T. Fühner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 797329.

[CrossRef]

M. Fakhry, Y. Granik, K. Adam, and K. Lai, “Total source mask optimization: High-capacity, resist modeling, and production-ready mask solution,” in Photomask Technology 2011, W. Maurer and F. E. Abboud, eds. (2011), vol. 8166 of Proc. SPIE, p. 81663M.

[CrossRef]

T. Dam, V. Tolani, P. Hu, K.-H. Baik, L. Pang, B. Gleason, S. D. Slonaker, and J. K. Tyminski, “Source-mask optimization (SMO): from theory to practice,” in Optical Microlithography XXIII, M. V. Dusa and W. Conley, eds. (2010), vol. 7640 of Proc. SPIE, p. 764028.

[CrossRef]

M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79731B.

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, and T. Fühner, “Evaluation of various compact mask and imaging models for the efficient simulation of mask topography effects in immersion lithography,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 832609.

[CrossRef]

A. K. Wong, Optical Imaging in Projection Microlithography (SPIE, 2005, Chap. 2).

[CrossRef]

G.-S. Yoon, H.-B. Kim, J.-W. Lee, S.-W. Choi, and W.-S. Han, “Phase-shifted assist feature OPC for sub-45nm node optical lithography,” in Optical Microlithography XX, D. G. Flagello, ed. (2007), vol. 6520 of Proc. SPIE, p. 65201A.

[CrossRef]

T. Fühner, P. Evanschitzky, and A. Erdmann, “Mutual source, mask and projector pupil optimization,” in Optical Microlithography XXV, W. Conley, ed. (2012), vol. 8326 of Proc. SPIE, p. 83260I.

[CrossRef]

J. Choi, I.-Y. Kang, J. S. Park, I. K. Shin, and C.-U. Jeon, “Manufacurability of computation lithography mask: Current limit and requirements for sub-20nm node,” in Optical Microlithography XXVI, W. Conley, ed. (2013), vol. 8683 of Proc. SPIE, p. 86830L.

[CrossRef]

V. Agudelo, P. Evanschitzky, A. Erdmann, T. Fühner, F. Shao, S. Limmer, and D. Fey, “Accuracy and performance of 3D mask models in optical projection lithography,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730O.

[CrossRef]

J. Finders and T. Hollink, “Mask 3D effects: Impact on imaging and placement,” in 27th European Mask and Lithography Conference, U. F. Behringer, ed. (2011), vol. 7985 of Proc. SPIE, p. 79850I.

[CrossRef]

F. Shao, P. Evanschitzky, D. Reibold, and A. Erdmann, “Fast rigorous simulation of mask diffraction using the waveguide method with parallelized decomposition technique,” in 24th European Mask and Lithography Conference, U. F. W. Behringer, ed. (2008), vol. 6792 of Proc. SPIE, p. 679206.

[CrossRef]

T. H. Coskun, H. Dai, H.-T. Huang, V. Kamat, and C. Ngai, “Accounting for mask topography effects in source-mask optimization for advanced nodes,” in Optical Microlithography XXIV, M. V. Dusa, ed. (2011), vol. 7973 of Proc. SPIE, p. 79730P.

[CrossRef]