Abstract

We present a closed-loop adaptive optics system based on a holographic sensing method. The system uses a multiplexed holographic recording of the response functions of each actuator in a deformable mirror. By comparing the output intensity measured in a pair of photodiodes, the absolute phase can be measured over each actuator location. From this a feedback correction signal is applied to the input beam without need for a computer. The sensing and correction is applied to each actuator in parallel, so the bandwidth is independent of the number of actuator. We demonstrate a breadboard system using a 32-actuator MEMS deformable mirror capable of operating at over 10kHz without a computer in the loop.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Geary, Introduction to Wavefront Sensors (SPIE, 1995).
  2. R. Tyson, Principles of Adaptive Optics, 2nd Ed. (Academic, 1998).
  3. F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999).
  4. M. A. A. Neil, M. J. Booth, T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17(6), 1098–1107 (2000).
    [CrossRef] [PubMed]
  5. M. A. A. Neil, M. J. Booth, T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett. 25(15), 1083–1085 (2000).
    [CrossRef] [PubMed]
  6. F. Ghebremichael, G. P. Andersen, K. S. Gurley, “Holography-based wavefront sensing,” Appl. Opt. 47(4), A62–A69 (2008).
    [CrossRef] [PubMed]
  7. A. D. Corbett, T. D. Wilkinson, J. J. Zhong, L. Diaz-Santana, “Designing a holographic modal wavefront sensor for the detection of static ocular aberrations,” J. Opt. Soc. Am. A 24(5), 1266–1275 (2007).
    [CrossRef] [PubMed]
  8. G. P. Andersen, L. Dussan, F. Ghebremichael, K. Chen, “Holographic wavefront sensor,” Opt. Eng. 48(8), 085801 (2009).
    [CrossRef]
  9. S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48(33), 6458–6465 (2009).
    [CrossRef] [PubMed]
  10. C. Liu, F. Xi, H. Ma, S. Huang, Z. Jiang, “Modal wavefront sensor based on binary phase-only multiplexed computer-generated hologram,” Appl. Opt. 49(27), 5117–5124 (2010).
    [CrossRef] [PubMed]
  11. A. Zepp, S. Gladysz, K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).
  12. S. Dong, T. Haist, W. Osten, “Hybrid wavefront sensor for the fast detection of wavefront disturbances,” Appl. Opt. 51(25), 6268–6274 (2012).
    [CrossRef] [PubMed]
  13. P. Hariharan, Optical Holography, 2nd ed. (Cambridge University, 1996).

2013

A. Zepp, S. Gladysz, K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).

2012

2010

2009

2008

2007

2000

Andersen, G. P.

G. P. Andersen, L. Dussan, F. Ghebremichael, K. Chen, “Holographic wavefront sensor,” Opt. Eng. 48(8), 085801 (2009).
[CrossRef]

F. Ghebremichael, G. P. Andersen, K. S. Gurley, “Holography-based wavefront sensing,” Appl. Opt. 47(4), A62–A69 (2008).
[CrossRef] [PubMed]

Bhatt, R.

Booth, M. J.

Chen, K.

G. P. Andersen, L. Dussan, F. Ghebremichael, K. Chen, “Holographic wavefront sensor,” Opt. Eng. 48(8), 085801 (2009).
[CrossRef]

Corbett, A. D.

Diaz-Santana, L.

Dong, S.

Dussan, L.

G. P. Andersen, L. Dussan, F. Ghebremichael, K. Chen, “Holographic wavefront sensor,” Opt. Eng. 48(8), 085801 (2009).
[CrossRef]

Ghebremichael, F.

G. P. Andersen, L. Dussan, F. Ghebremichael, K. Chen, “Holographic wavefront sensor,” Opt. Eng. 48(8), 085801 (2009).
[CrossRef]

F. Ghebremichael, G. P. Andersen, K. S. Gurley, “Holography-based wavefront sensing,” Appl. Opt. 47(4), A62–A69 (2008).
[CrossRef] [PubMed]

Gladysz, S.

A. Zepp, S. Gladysz, K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).

Gupta, A. K.

Gurley, K. S.

Haist, T.

Huang, S.

Jiang, Z.

Liu, C.

Ma, H.

Mishra, S. K.

Mohan, D.

Neil, M. A. A.

Osten, W.

Sharma, A.

Stein, K.

A. Zepp, S. Gladysz, K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).

Wilkinson, T. D.

Wilson, T.

Xi, F.

Zepp, A.

A. Zepp, S. Gladysz, K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).

Zhong, J. J.

Appl. Opt.

J. Adv. Opt. Technol.

A. Zepp, S. Gladysz, K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).

J. Opt. Soc. Am. A

Opt. Eng.

G. P. Andersen, L. Dussan, F. Ghebremichael, K. Chen, “Holographic wavefront sensor,” Opt. Eng. 48(8), 085801 (2009).
[CrossRef]

Opt. Lett.

Other

J. M. Geary, Introduction to Wavefront Sensors (SPIE, 1995).

R. Tyson, Principles of Adaptive Optics, 2nd Ed. (Academic, 1998).

F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999).

P. Hariharan, Optical Holography, 2nd ed. (Cambridge University, 1996).

Supplementary Material (2)

» Media 1: MP4 (3538 KB)     
» Media 2: MP4 (2917 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The first recording is made with the actuator pushed to its maximal extent. (b) A second hologram is recorded on the first with the actuator fully pulled and a reference beam focused to B. (c) An input beam with arbitrary phase will reconstruct two focused beams to points A & B. (d) A filled wavefront generates one pair of foci for each actuator.

Fig. 2
Fig. 2

(a) A schematic of the reconstruction for a beam reflected off a single actuator, diffracting from the hologram (H) to produce two beams focused on two pinholes (P). The two reconstruction conditions are shown as the actuator is varied from maximum push to pull. A model of the HALOS response function is shown plotted against actuator position (b) and actuator voltage (c).

Fig. 3
Fig. 3

(a) Recording. An aperture isolates a particular actuator while the reference beam is formed from a coherent beam directed through a fiber and focusing optics. (b) Replay. The aperture is replaced by a deformable mirror for testing. Light not directed onto the sensor forms the corrected output.

Fig. 4
Fig. 4

(a) The response function measured for a single actuator driven through the full range of motion. (b) The response functions simultaneously recorded for the correct actuator channel, as well as the neighboring channels as the single actuator is driven through its full range.

Fig. 5
Fig. 5

(a) An image of HALOS showing the DM (top center), hologram (right) and sensor (lower left) which was uncovered in this photo to show the electronics. (b) An image of the hologram. Note the slight overlap between pairs of holograms (with their circular profile) centered on each actuator location.

Fig. 6
Fig. 6

Point spread function before (a) and after (b) correction. Surface plots generated from these images are shown in (c) and (d), along with a video (Media 1). Wavefront interferometry before (e) and after (f) correction is shown, along with video (Media 2). The red border indicates the extent of the deformable mirror.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

O(r) = A o exp(-ikW(r))
W(r)=ε exp(- r 2 /2 σ 2 )
E(r,z)= A r exp(-ikz) exp(-k r 2 /2f) exp(-ik(xsin θ x + ysin θ y )
I =[ E + O ][ E + O ]* = | E | 2 + | O | 2 + E*O + EO*     
F out = T F in =β[ | E | 2 + | O | 2 + E*O + EO* ]O
=β[ | E | 2 O + | O | 2 O + E* O 2 + E | O | 2 ]

Metrics