Abstract

Low-loss and low-crosstalk 8 × 8 arrayed waveguide grating (AWG) routers based on silicon nanowire waveguides are reported. A comparative study of the measurement results of the 3.2 nm-channel-spacing AWGs with three different designs is performed to evaluate the effect of each optimal technique, showing that a comprehensive optimization technique is more effective to improve the device performance than a single optimization. Based on the comprehensive optimal design, we further design and experimentally demonstrate a new 8-channel 0.8 nm-channel-spacing silicon AWG router for dense wavelength division multiplexing (DWDM) application with 130 nm CMOS technology. The AWG router with a channel spacing of 3.2 nm (resp. 0.8 nm) exhibits low insertion loss of 2.32 dB (resp. 2.92 dB) and low crosstalk of −20.5~-24.5 dB (resp. −16.9~-17.8 dB). In addition, sophisticated measurements are presented including all-input transmission testing and high-speed WDM system demonstrations for these routers. The functionality of the Si nanowire AWG as a router is characterized and a good cyclic rotation property is demonstrated. Moreover, we test the optical eye diagrams and bit-error-rates (BER) of the de-multiplexed signal when the multi-wavelength high-speed signals are launched into the AWG routers in a system experiment. Clear optical eye diagrams and low power penalty from the system point of view are achieved thanks to the low crosstalk of the AWG devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Smit, C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
    [CrossRef]
  2. M. Zirngibl, C. Dragone, C. Joyner, “Demonstration of a 15×15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4(11), 1250–1253 (1992).
    [CrossRef]
  3. R. Adar, C. Henry, C. Dragone, R. Kistler, M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
    [CrossRef]
  4. B. Yang, Y. P. Zhu, Y. Q. Jiao, L. Yang, Z. Sheng, S. L. He, D. X. Dai, “Compact arrayed waveguide grating devices based on small SU-8 strip waveguides,” J. Lightwave Technol. 29(13), 2009–2014 (2011).
    [CrossRef]
  5. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
    [CrossRef]
  6. L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, J. Teng, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, G. Morthier, “Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides,” Appl. Opt. 51(9), 1251–1256 (2012).
    [CrossRef] [PubMed]
  7. K. Okamoto, K. Ishida, “Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors,” Opt. Lett. 38(18), 3530–3533 (2013).
    [CrossRef] [PubMed]
  8. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI Aperture,” J. Lightwave Technol. 31(1), 87–93 (2013).
    [CrossRef]
  9. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact 16×16 channels routers based on silicon-on-insulator AWGs,” in 16th Annual symposium of the IEEE Photonics Benelux Chapter (IEEE Photonics Society, 2011), 101–104.
  10. D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
    [CrossRef]
  11. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
    [CrossRef] [PubMed]
  12. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
    [CrossRef] [PubMed]
  13. G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17(3), 571–580 (2011).
    [CrossRef]
  14. Z. Sheng, D. Dai, S. He, “Improve channel uniformity of an Si-nanowire AWG demultiplexer by using dual-tapered auxiliary waveguides,” J. Lightwave Technol. 25(10), 3001–3007 (2007).
    [CrossRef]
  15. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (2007), 67–68.
  16. J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng, A. M. Wu, X. Wang, S. C. Zou, F. W. Gan, “Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator,” J. Lightwave Technol. 31(24), 4119–4125 (2013).
    [CrossRef]
  17. Y. Tachikawa, Y. Inoue, M. Ishii, T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications,” J. Lightwave Technol. 14(6), 977–984 (1996).
    [CrossRef]
  18. S. Suzuki, A. Himeno, M. Ishii, “Integrated multichannel optical wavelength selective switches incorporating an arrayed-waveguide grating multiplexer and thermooptic switches,” J. Lightwave Technol. 16(4), 650–655 (1998).
    [CrossRef]
  19. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007).
    [CrossRef] [PubMed]
  20. J. Zou, X. X. Jiang, X. Xia, T. T. Lang, J. J. He, “Ultra-compact birefringence-compensated arrayed waveguide grating triplexer based on silicon-on-insulator,” J. Lightwave Technol. 31(12), 1935–1940 (2013).
    [CrossRef]
  21. T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013).
    [CrossRef]

2013

2012

2011

B. Yang, Y. P. Zhu, Y. Q. Jiao, L. Yang, Z. Sheng, S. L. He, D. X. Dai, “Compact arrayed waveguide grating devices based on small SU-8 strip waveguides,” J. Lightwave Technol. 29(13), 2009–2014 (2011).
[CrossRef]

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17(3), 571–580 (2011).
[CrossRef]

2010

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

2008

D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[CrossRef]

2007

2006

1998

1996

Y. Tachikawa, Y. Inoue, M. Ishii, T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications,” J. Lightwave Technol. 14(6), 977–984 (1996).
[CrossRef]

M. Smit, C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

1993

R. Adar, C. Henry, C. Dragone, R. Kistler, M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

1992

M. Zirngibl, C. Dragone, C. Joyner, “Demonstration of a 15×15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4(11), 1250–1253 (1992).
[CrossRef]

Adar, R.

R. Adar, C. Henry, C. Dragone, R. Kistler, M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

Baets, R.

Beckx, S.

Bogaerts, W.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI Aperture,” J. Lightwave Technol. 31(1), 87–93 (2013).
[CrossRef]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” Opt. Express 20(26), B493–B500 (2012).
[CrossRef] [PubMed]

L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, J. Teng, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, G. Morthier, “Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides,” Appl. Opt. 51(9), 1251–1256 (2012).
[CrossRef] [PubMed]

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17(3), 571–580 (2011).
[CrossRef]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
[CrossRef] [PubMed]

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Cheben, P.

Dai, D.

Dai, D. X.

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Delâge, A.

Densmore, A.

Dragone, C.

R. Adar, C. Henry, C. Dragone, R. Kistler, M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

M. Zirngibl, C. Dragone, C. Joyner, “Demonstration of a 15×15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4(11), 1250–1253 (1992).
[CrossRef]

Dumon, P.

Fukuda, H.

T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013).
[CrossRef]

Gan, F. W.

Halir, R.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17(3), 571–580 (2011).
[CrossRef]

Han, X.

He, J. J.

He, S.

He, S. L.

Henry, C.

R. Adar, C. Henry, C. Dragone, R. Kistler, M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

Himeno, A.

Hiraki, T.

T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013).
[CrossRef]

Inoue, Y.

Y. Tachikawa, Y. Inoue, M. Ishii, T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications,” J. Lightwave Technol. 14(6), 977–984 (1996).
[CrossRef]

Ishida, K.

Ishii, M.

S. Suzuki, A. Himeno, M. Ishii, “Integrated multichannel optical wavelength selective switches incorporating an arrayed-waveguide grating multiplexer and thermooptic switches,” J. Lightwave Technol. 16(4), 650–655 (1998).
[CrossRef]

Y. Tachikawa, Y. Inoue, M. Ishii, T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications,” J. Lightwave Technol. 14(6), 977–984 (1996).
[CrossRef]

Ishikawa, Y.

T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013).
[CrossRef]

Jaenen, P.

Janz, S.

Jian, X.

Jiang, X. X.

Jiao, Y. Q.

Joyner, C.

M. Zirngibl, C. Dragone, C. Joyner, “Demonstration of a 15×15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4(11), 1250–1253 (1992).
[CrossRef]

Kim, D. J.

D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[CrossRef]

Kim, G.

D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[CrossRef]

Kistler, R.

R. Adar, C. Henry, C. Dragone, R. Kistler, M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

Lamontagne, B.

Lang, T. T.

Lapointe, J.

Lee, J. M.

D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[CrossRef]

Li, H.

Li, L.

Ling, W.

Milbrodt, M.

R. Adar, C. Henry, C. Dragone, R. Kistler, M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

Morthier, G.

Nishi, H.

T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013).
[CrossRef]

Nozawa, T.

Y. Tachikawa, Y. Inoue, M. Ishii, T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications,” J. Lightwave Technol. 14(6), 977–984 (1996).
[CrossRef]

Okamoto, K.

Pang, A.

Pathak, S.

Post, E.

Pyo, J.

D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[CrossRef]

Qiu, C.

Rai, K.

T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013).
[CrossRef]

Roelkens, G.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17(3), 571–580 (2011).
[CrossRef]

Schmid, J. H.

Selvaraja, S.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17(3), 571–580 (2011).
[CrossRef]

Selvaraja, S. K.

L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, J. Teng, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, G. Morthier, “Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides,” Appl. Opt. 51(9), 1251–1256 (2012).
[CrossRef] [PubMed]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

Sheng, Z.

Smit, M.

M. Smit, C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

Song, J. H.

D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[CrossRef]

Suzuki, S.

Tachikawa, Y.

Y. Tachikawa, Y. Inoue, M. Ishii, T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications,” J. Lightwave Technol. 14(6), 977–984 (1996).
[CrossRef]

Taillaert, D.

Takeda, K.

T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013).
[CrossRef]

Teng, J.

Tsuchizawa, T.

T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013).
[CrossRef]

Van Dam, C.

M. Smit, C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

Van Thourhout, D.

Vanslembrouck, M.

Vermeulen, D.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17(3), 571–580 (2011).
[CrossRef]

Wada, K.

T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013).
[CrossRef]

Waldron, P.

Wang, J.

Wang, L.

Wang, X.

Wouters, J.

Wu, A. M.

Xia, X.

Xu, D.-X.

Yamada, K.

T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013).
[CrossRef]

Yang, B.

Yang, L.

Zhao, M.

Zhu, Y. P.

Zirngibl, M.

M. Zirngibl, C. Dragone, C. Joyner, “Demonstration of a 15×15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4(11), 1250–1253 (1992).
[CrossRef]

Zou, J.

Zou, S. C.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

M. Smit, C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17(3), 571–580 (2011).
[CrossRef]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20(19), 1615–1617 (2008).
[CrossRef]

M. Zirngibl, C. Dragone, C. Joyner, “Demonstration of a 15×15 arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett. 4(11), 1250–1253 (1992).
[CrossRef]

IEEE Photonics J.

T. Hiraki, H. Nishi, T. Tsuchizawa, K. Rai, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, K. Yamada, “Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver,” IEEE Photonics J. 5(4), 4500407 (2013).
[CrossRef]

J. Lightwave Technol.

J. Zou, X. X. Jiang, X. Xia, T. T. Lang, J. J. He, “Ultra-compact birefringence-compensated arrayed waveguide grating triplexer based on silicon-on-insulator,” J. Lightwave Technol. 31(12), 1935–1940 (2013).
[CrossRef]

R. Adar, C. Henry, C. Dragone, R. Kistler, M. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” J. Lightwave Technol. 11(2), 212–219 (1993).
[CrossRef]

B. Yang, Y. P. Zhu, Y. Q. Jiao, L. Yang, Z. Sheng, S. L. He, D. X. Dai, “Compact arrayed waveguide grating devices based on small SU-8 strip waveguides,” J. Lightwave Technol. 29(13), 2009–2014 (2011).
[CrossRef]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts, “Optimized silicon AWG with flattened spectral response using an MMI Aperture,” J. Lightwave Technol. 31(1), 87–93 (2013).
[CrossRef]

Z. Sheng, D. Dai, S. He, “Improve channel uniformity of an Si-nanowire AWG demultiplexer by using dual-tapered auxiliary waveguides,” J. Lightwave Technol. 25(10), 3001–3007 (2007).
[CrossRef]

J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng, A. M. Wu, X. Wang, S. C. Zou, F. W. Gan, “Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator,” J. Lightwave Technol. 31(24), 4119–4125 (2013).
[CrossRef]

Y. Tachikawa, Y. Inoue, M. Ishii, T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications,” J. Lightwave Technol. 14(6), 977–984 (1996).
[CrossRef]

S. Suzuki, A. Himeno, M. Ishii, “Integrated multichannel optical wavelength selective switches incorporating an arrayed-waveguide grating multiplexer and thermooptic switches,” J. Lightwave Technol. 16(4), 650–655 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact 16×16 channels routers based on silicon-on-insulator AWGs,” in 16th Annual symposium of the IEEE Photonics Benelux Chapter (IEEE Photonics Society, 2011), 101–104.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (2007), 67–68.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a-c) The microscope pictures of the AWG routers (#1, #2, #3), respectively. Insets: Detail views of the bends in the arrayed waveguides and the tapers near the FPR.

Fig. 2
Fig. 2

(a-c) The measured spectra of the fabricated AWG (#1, #2, #3), respectively when light launched into the center input channel. (d) The insertion loss and (e) crosstalk of each output channel.

Fig. 3
Fig. 3

(a) The microscope picture, (b) transmission spectrum, and (c) extracted performance in each channel of the 0.8 nm-channel-spacing AWG router with a comprehensive optimal design. The design parameters of AWG (#4) are as follows: ΔCH = 0.8 nm, NCH = 8, FSR = 6.4 nm, L = 127.608 μm, N = 35, ΔL = 101.599 μm, m = 180, d = 3.1 μm, da = 2.8 μm.

Fig. 4
Fig. 4

The measured cyclic rotation properties of the 8 × 8 Si nanowire AWG routers with (a) 3.2 nm (AWG #3) and (b) 0.8 nm (AWG #4) channel spacing, respectively.

Fig. 5
Fig. 5

(a) The experimental setup for evaluating the transmission characteristics of the Si AWGs (#3, #4). (b) BER measurement for the demultiplexed output signal when the input signals are modulated at various data rate (2.5 Gb/s, 5 Gb/s and 10 Gb/s) and passed through various lengths (0 km, 5 km and 15 km). (c) Optical eye diagrams of the output signal modulated at 10 Gb/s data rate for fibers with various lengths.

Tables (2)

Tables Icon

Table 1 AWG design parameters

Tables Icon

Table 2 Performance comparison of previously reported silicon nanowire AWGs with the devices in this work

Metrics