Abstract

We have extended Laser Doppler holographic microscopy to transmission geometry. The technique is validated with living fish embryos imaged by a modified upright bio-microcope. By varying the frequency of the holographic reference beam, and the combination of frames used to calculate the hologram, multimodal imaging has been performed. Doppler images of the blood vessels for different Doppler shifts, images where the flow direction is coded in RGB colors or movies showing blood cells individual motion have been obtained as well. The ability to select the Fourier space zone that is used to calculate the signal, makes the method quantitative.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
    [CrossRef] [PubMed]
  2. M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
    [CrossRef] [PubMed]
  3. J. Kur, E. A. Newman, T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Prog. Retin. Eye Res. 31, 377–406 (2012).
    [CrossRef] [PubMed]
  4. O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiol.-Heart C. 234, H59–H66 (1978).
  5. I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
    [CrossRef]
  6. Y. Yeh, H. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
    [CrossRef]
  7. J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
    [CrossRef]
  8. J. D. Briers, S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
    [CrossRef] [PubMed]
  9. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40, 367–377 (2012).
    [CrossRef]
  10. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
    [CrossRef] [PubMed]
  11. S. Yuan, A. Devor, D. A. Boas, A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
    [CrossRef] [PubMed]
  12. Y. Zeng, M. Wang, G. Feng, X. Liang, G. Yang, “Laser speckle imaging based on intensity fluctuation modulation,” Opt. Lett. 38, 1313–1315 (2013).
    [CrossRef] [PubMed]
  13. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef] [PubMed]
  14. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197, 454–487 (1949).
    [CrossRef]
  15. E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. A 52, 1123–1128 (1962).
    [CrossRef]
  16. U. Schnars, W. Jüptner, “Direct recording of holograms by a ccd target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef] [PubMed]
  17. A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
    [CrossRef]
  18. Y. Pu, H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697–7708 (2005).
    [CrossRef] [PubMed]
  19. J.-M. Desse, P. Picart, P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt. Express 16, 5471–5480 (2008).
    [CrossRef] [PubMed]
  20. N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, “Digital in-line holography in thick optical systems: application to visualization in pipes,” Appl. Opt. 47, 4147–4157 (2008).
    [CrossRef] [PubMed]
  21. N. Verrier, C. Remacha, M. Brunel, D. Lebrun, S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819 (2010).
    [CrossRef] [PubMed]
  22. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. Mitchell, P. Marquet, B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005–7013 (2006).
    [CrossRef] [PubMed]
  23. W. Xu, M. Jericho, I. Meinertzhagen, H. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
    [CrossRef] [PubMed]
  24. B. Kemper, G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [CrossRef] [PubMed]
  25. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).
  26. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
    [CrossRef] [PubMed]
  27. P. Picart, J. Leval, D. Mounier, S. Gougeon, “Some opportunities for vibration analysis with time averaging in digital fresnel holography,” Appl. Opt. 44, 337–343 (2005).
    [CrossRef] [PubMed]
  28. J. Leval, P. Picart, J. P. Boileau, J. C. Pascal, “Full-field vibrometry with digital fresnel holography,” Appl. Opt. 44, 5763–5772 (2005).
    [CrossRef] [PubMed]
  29. A. Asundi, V. R. Singh et al., “Time-averaged in-line digital holographic interferometry for vibration analysis,” Appl. Opt. 45, 2391–2395 (2006).
    [CrossRef] [PubMed]
  30. F. Le Clerc, L. Collot, M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
    [CrossRef]
  31. M. Atlan, M. Gross, E. Absil, “Accurate phase-shifting digital interferometry,” Opt. Lett. 32, 1456–1458 (2007).
    [CrossRef] [PubMed]
  32. F. Verpillat, F. Joud, M. Atlan, M. Gross, “Digital holography at shot noise level,” J. DisplayTechnol. 6, 455–464 (2010).
  33. M. Lesaffre, N. Verrier, M. Gross, “Noise and signal scaling factors in digital holography in weak illumination: relationship with shot noise,” Appl. Opt. 52, A81–A91 (2013).
    [CrossRef] [PubMed]
  34. M. Atlan, M. Gross, “Laser doppler imaging, revisited,” Rev. of Sci. Instrum. 77, 116103 (2006).
    [CrossRef]
  35. M. Atlan, M. Gross, J. Leng, “Laser doppler imaging of microflow,” J. Europ. Opt. Soc. Rapid pub. 1, 06025 (2006).
    [CrossRef]
  36. F. Verpillat, F. Joud, M. Atlan, M. Gross, “Imaging velocities of a vibrating object by stroboscopic sideband holography,” Opt. Express 20, 22860–22871 (2012).
    [CrossRef] [PubMed]
  37. N. Verrier, M. Atlan, “Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator,” Opt. Lett. 38, 739–741 (2013).
    [CrossRef] [PubMed]
  38. N. Verrier, M. Gross, M. Atlan, “Phase-resolved heterodyne holographic vibrometry with a strobe local oscillator,” Opt. Lett. 38, 377–379 (2013).
    [CrossRef] [PubMed]
  39. M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
    [CrossRef] [PubMed]
  40. M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
    [CrossRef] [PubMed]
  41. M. Simonutti, M. Paques, J.-A. Sahel, M. Gross, B. Samson, C. Magnain, M. Atlan, “Holographic laser doppler ophthalmoscopy,” Opt. Lett. 35, 1941–1943 (2010).
    [CrossRef] [PubMed]
  42. C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, M. S. Feld, “Imaging voltage-dependent cell motions with heterodyne mach-zehnder phase microscopy,” Opt. Lett. 32, 1572–1574 (2007).
    [CrossRef] [PubMed]
  43. H. Iwai, T. Yamauchi, M. Miwa, Y. Yamashita, “Doppler-spectrally encoded imaging of translational objects,” Opt. Commmun. 319, 159–169 (2014).
    [CrossRef]
  44. S. Joseph, J.-M. Gineste, M. Whelan, D. Newport, “A heterodyne mach-zehnder interferometer employing static and dynamic phase demodulation techniques for live-cell imaging,” Proc. SPIE 7554, 75540P (2010).
    [CrossRef]
  45. M. Westerfield, The Zebrafish Book: a Guide for the Laboratory use of Zebrafish (Danio rerio) (Institute of Neuroscience. University of Oregon, 1995).
  46. S. Isogai, M. Horiguchi, B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol. 230, 278–301 (2001).
    [CrossRef] [PubMed]
  47. M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
    [CrossRef] [PubMed]
  48. M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
    [CrossRef] [PubMed]
  49. M. Atlan, M. Gross, T. Vitalis, A. Rancillac, J. Rossier, A. Boccara, “High-speed wave-mixing laser doppler imaging in vivo,” Opt. Lett. 33, 842–844 (2008).
    [CrossRef] [PubMed]
  50. N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy.” Opt. Express 18, 3264–3273 (2010).
    [CrossRef] [PubMed]
  51. F. Verpillat, F. Joud, P. Desbiolles, M. Gross, “Dark-field digital holographic microscopy for 3d-tracking of gold nanoparticles,” Opt. Express 19, 26044–26055 (2011).
    [CrossRef]
  52. E. Cuche, P. Marquet, C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [CrossRef]
  53. J. Gao, J. A. Lyon, D. P. Szeto, J. Chen, “In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy,” Biomed. Opt. Express 3, 2623–2635 (2012).
    [CrossRef] [PubMed]

2014

H. Iwai, T. Yamauchi, M. Miwa, Y. Yamashita, “Doppler-spectrally encoded imaging of translational objects,” Opt. Commmun. 319, 159–169 (2014).
[CrossRef]

2013

2012

F. Verpillat, F. Joud, M. Atlan, M. Gross, “Imaging velocities of a vibrating object by stroboscopic sideband holography,” Opt. Express 20, 22860–22871 (2012).
[CrossRef] [PubMed]

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[CrossRef] [PubMed]

J. Kur, E. A. Newman, T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Prog. Retin. Eye Res. 31, 377–406 (2012).
[CrossRef] [PubMed]

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40, 367–377 (2012).
[CrossRef]

J. Gao, J. A. Lyon, D. P. Szeto, J. Chen, “In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy,” Biomed. Opt. Express 3, 2623–2635 (2012).
[CrossRef] [PubMed]

2011

2010

N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy.” Opt. Express 18, 3264–3273 (2010).
[CrossRef] [PubMed]

M. Simonutti, M. Paques, J.-A. Sahel, M. Gross, B. Samson, C. Magnain, M. Atlan, “Holographic laser doppler ophthalmoscopy,” Opt. Lett. 35, 1941–1943 (2010).
[CrossRef] [PubMed]

S. Joseph, J.-M. Gineste, M. Whelan, D. Newport, “A heterodyne mach-zehnder interferometer employing static and dynamic phase demodulation techniques for live-cell imaging,” Proc. SPIE 7554, 75540P (2010).
[CrossRef]

F. Verpillat, F. Joud, M. Atlan, M. Gross, “Digital holography at shot noise level,” J. DisplayTechnol. 6, 455–464 (2010).

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).

N. Verrier, C. Remacha, M. Brunel, D. Lebrun, S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18, 7807–7819 (2010).
[CrossRef] [PubMed]

2008

2007

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, M. S. Feld, “Imaging voltage-dependent cell motions with heterodyne mach-zehnder phase microscopy,” Opt. Lett. 32, 1572–1574 (2007).
[CrossRef] [PubMed]

M. Atlan, M. Gross, E. Absil, “Accurate phase-shifting digital interferometry,” Opt. Lett. 32, 1456–1458 (2007).
[CrossRef] [PubMed]

2006

2005

2001

J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[CrossRef]

W. Xu, M. Jericho, I. Meinertzhagen, H. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

S. Isogai, M. Horiguchi, B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol. 230, 278–301 (2001).
[CrossRef] [PubMed]

2000

1999

A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
[CrossRef]

1996

J. D. Briers, S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

1995

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[CrossRef] [PubMed]

1994

1987

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
[CrossRef]

1978

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiol.-Heart C. 234, H59–H66 (1978).

1964

Y. Yeh, H. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[CrossRef]

1962

E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. A 52, 1123–1128 (1962).
[CrossRef]

1949

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197, 454–487 (1949).
[CrossRef]

1948

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Abboud, M.

Absil, E.

Asundi, A.

Atlan, M.

N. Verrier, M. Atlan, “Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator,” Opt. Lett. 38, 739–741 (2013).
[CrossRef] [PubMed]

N. Verrier, M. Gross, M. Atlan, “Phase-resolved heterodyne holographic vibrometry with a strobe local oscillator,” Opt. Lett. 38, 377–379 (2013).
[CrossRef] [PubMed]

F. Verpillat, F. Joud, M. Atlan, M. Gross, “Imaging velocities of a vibrating object by stroboscopic sideband holography,” Opt. Express 20, 22860–22871 (2012).
[CrossRef] [PubMed]

F. Verpillat, F. Joud, M. Atlan, M. Gross, “Digital holography at shot noise level,” J. DisplayTechnol. 6, 455–464 (2010).

N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy.” Opt. Express 18, 3264–3273 (2010).
[CrossRef] [PubMed]

M. Simonutti, M. Paques, J.-A. Sahel, M. Gross, B. Samson, C. Magnain, M. Atlan, “Holographic laser doppler ophthalmoscopy,” Opt. Lett. 35, 1941–1943 (2010).
[CrossRef] [PubMed]

M. Atlan, M. Gross, T. Vitalis, A. Rancillac, J. Rossier, A. Boccara, “High-speed wave-mixing laser doppler imaging in vivo,” Opt. Lett. 33, 842–844 (2008).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, M. Gross, E. Absil, “Accurate phase-shifting digital interferometry,” Opt. Lett. 32, 1456–1458 (2007).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

M. Atlan, M. Gross, J. Leng, “Laser doppler imaging of microflow,” J. Europ. Opt. Soc. Rapid pub. 1, 06025 (2006).
[CrossRef]

M. Atlan, M. Gross, “Laser doppler imaging, revisited,” Rev. of Sci. Instrum. 77, 116103 (2006).
[CrossRef]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

Boas, D. A.

Boccara, A.

Boccara, A. C.

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

Boileau, J. P.

Briers, D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[CrossRef]

J. D. Briers, S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

Brown, J.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiol.-Heart C. 234, H59–H66 (1978).

Brunel, M.

Bun, P.

Carbin, G. L.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiol.-Heart C. 234, H59–H66 (1978).

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[CrossRef] [PubMed]

Chan-Ling, T.

J. Kur, E. A. Newman, T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Prog. Retin. Eye Res. 31, 377–406 (2012).
[CrossRef] [PubMed]

Charrière, F.

Chen, J.

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[CrossRef] [PubMed]

Choi, W.

Coëtmellec, S.

Collot, L.

Colomb, T.

Coppey-Moisan, M.

Cuche, E.

Cummins, H.

Y. Yeh, H. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[CrossRef]

Dasari, R. R.

Depeursinge, C.

Desbiolles, P.

Desse, J.-M.

Devor, A.

Duncan, D. D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[CrossRef] [PubMed]

Dunn, A. K.

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40, 367–377 (2012).
[CrossRef]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

S. Yuan, A. Devor, D. A. Boas, A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
[CrossRef] [PubMed]

Egan, K.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[CrossRef] [PubMed]

Fang-Yen, C.

Feld, M. S.

Feng, G.

Forget, B. C.

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

Friedman, E.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[CrossRef] [PubMed]

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[CrossRef] [PubMed]

Gabor, D.

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197, 454–487 (1949).
[CrossRef]

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Gao, J.

Gineste, J.-M.

S. Joseph, J.-M. Gineste, M. Whelan, D. Newport, “A heterodyne mach-zehnder interferometer employing static and dynamic phase demodulation techniques for live-cell imaging,” Proc. SPIE 7554, 75540P (2010).
[CrossRef]

Gougeon, S.

Gragoudas, E.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[CrossRef] [PubMed]

Grima, N. A.

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[CrossRef] [PubMed]

Gross, M.

M. Lesaffre, N. Verrier, M. Gross, “Noise and signal scaling factors in digital holography in weak illumination: relationship with shot noise,” Appl. Opt. 52, A81–A91 (2013).
[CrossRef] [PubMed]

N. Verrier, M. Gross, M. Atlan, “Phase-resolved heterodyne holographic vibrometry with a strobe local oscillator,” Opt. Lett. 38, 377–379 (2013).
[CrossRef] [PubMed]

F. Verpillat, F. Joud, M. Atlan, M. Gross, “Imaging velocities of a vibrating object by stroboscopic sideband holography,” Opt. Express 20, 22860–22871 (2012).
[CrossRef] [PubMed]

F. Verpillat, F. Joud, P. Desbiolles, M. Gross, “Dark-field digital holographic microscopy for 3d-tracking of gold nanoparticles,” Opt. Express 19, 26044–26055 (2011).
[CrossRef]

M. Simonutti, M. Paques, J.-A. Sahel, M. Gross, B. Samson, C. Magnain, M. Atlan, “Holographic laser doppler ophthalmoscopy,” Opt. Lett. 35, 1941–1943 (2010).
[CrossRef] [PubMed]

N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy.” Opt. Express 18, 3264–3273 (2010).
[CrossRef] [PubMed]

F. Verpillat, F. Joud, M. Atlan, M. Gross, “Digital holography at shot noise level,” J. DisplayTechnol. 6, 455–464 (2010).

M. Atlan, M. Gross, T. Vitalis, A. Rancillac, J. Rossier, A. Boccara, “High-speed wave-mixing laser doppler imaging in vivo,” Opt. Lett. 33, 842–844 (2008).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, M. Gross, E. Absil, “Accurate phase-shifting digital interferometry,” Opt. Lett. 32, 1456–1458 (2007).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

M. Atlan, M. Gross, “Laser doppler imaging, revisited,” Rev. of Sci. Instrum. 77, 116103 (2006).
[CrossRef]

M. Atlan, M. Gross, J. Leng, “Laser doppler imaging of microflow,” J. Europ. Opt. Soc. Rapid pub. 1, 06025 (2006).
[CrossRef]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

F. Le Clerc, L. Collot, M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
[CrossRef]

Heger, T. J.

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[CrossRef] [PubMed]

Hirst, E.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[CrossRef] [PubMed]

Horiguchi, M.

S. Isogai, M. Horiguchi, B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol. 230, 278–301 (2001).
[CrossRef] [PubMed]

Iida, H.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
[CrossRef]

Inugami, A.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
[CrossRef]

Isogai, S.

S. Isogai, M. Horiguchi, B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol. 230, 278–301 (2001).
[CrossRef] [PubMed]

Iwai, H.

H. Iwai, T. Yamauchi, M. Miwa, Y. Yamashita, “Doppler-spectrally encoded imaging of translational objects,” Opt. Commmun. 319, 159–169 (2014).
[CrossRef]

Jehle, J.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiol.-Heart C. 234, H59–H66 (1978).

Jericho, M.

W. Xu, M. Jericho, I. Meinertzhagen, H. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

Jo, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[CrossRef] [PubMed]

Joseph, S.

S. Joseph, J.-M. Gineste, M. Whelan, D. Newport, “A heterodyne mach-zehnder interferometer employing static and dynamic phase demodulation techniques for live-cell imaging,” Proc. SPIE 7554, 75540P (2010).
[CrossRef]

Joud, F.

Jung, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[CrossRef] [PubMed]

Jüptner, W.

Kanno, I.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
[CrossRef]

Kemper, B.

Kennedy, C.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiol.-Heart C. 234, H59–H66 (1978).

Kim, K.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[CrossRef] [PubMed]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).

Kirkpatrick, S. J.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[CrossRef] [PubMed]

Kostas, J.

A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
[CrossRef]

Kreuzer, H.

W. Xu, M. Jericho, I. Meinertzhagen, H. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

Krupsky, S.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[CrossRef] [PubMed]

Kur, J.

J. Kur, E. A. Newman, T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Prog. Retin. Eye Res. 31, 377–406 (2012).
[CrossRef] [PubMed]

Lane, A.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[CrossRef] [PubMed]

Larsson, M.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[CrossRef] [PubMed]

Le Clerc, F.

Lebrun, D.

Lee, K.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[CrossRef] [PubMed]

Lee, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[CrossRef] [PubMed]

Leith, E. N.

E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. A 52, 1123–1128 (1962).
[CrossRef]

Leng, J.

M. Atlan, M. Gross, J. Leng, “Laser doppler imaging of microflow,” J. Europ. Opt. Soc. Rapid pub. 1, 06025 (2006).
[CrossRef]

Lesaffre, M.

Leval, J.

Liang, X.

Lozano, A.

A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
[CrossRef]

Lyon, J. A.

Magnain, C.

Marquet, P.

Meinertzhagen, I.

W. Xu, M. Jericho, I. Meinertzhagen, H. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

Meng, H.

Mitchell, E. A.

Miura, S.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
[CrossRef]

Miwa, M.

H. Iwai, T. Yamauchi, M. Miwa, Y. Yamashita, “Doppler-spectrally encoded imaging of translational objects,” Opt. Commmun. 319, 159–169 (2014).
[CrossRef]

Mounier, D.

Murakami, M.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
[CrossRef]

Newman, E. A.

J. Kur, E. A. Newman, T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Prog. Retin. Eye Res. 31, 377–406 (2012).
[CrossRef] [PubMed]

Newport, D.

S. Joseph, J.-M. Gineste, M. Whelan, D. Newport, “A heterodyne mach-zehnder interferometer employing static and dynamic phase demodulation techniques for live-cell imaging,” Proc. SPIE 7554, 75540P (2010).
[CrossRef]

Oak, S.

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[CrossRef] [PubMed]

Oh, S.

Paques, M.

Park, H.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[CrossRef] [PubMed]

Park, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[CrossRef] [PubMed]

C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, M. S. Feld, “Imaging voltage-dependent cell motions with heterodyne mach-zehnder phase microscopy,” Opt. Lett. 32, 1572–1574 (2007).
[CrossRef] [PubMed]

Pascal, J. C.

Pase, M. P.

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[CrossRef] [PubMed]

Pavillon, N.

Picart, P.

Pipingas, A.

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[CrossRef] [PubMed]

Pu, Y.

Rancillac, A.

M. Atlan, M. Gross, T. Vitalis, A. Rancillac, J. Rossier, A. Boccara, “High-speed wave-mixing laser doppler imaging in vivo,” Opt. Lett. 33, 842–844 (2008).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

Rappaz, B.

Remacha, C.

Rossier, J.

Sahel, J.-A.

Sakurada, O.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiol.-Heart C. 234, H59–H66 (1978).

Samson, B.

Sasaki, H.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
[CrossRef]

Schnars, U.

Scholey, A.

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[CrossRef] [PubMed]

Seung, H. S.

Shishido, F.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
[CrossRef]

Simonutti, M.

Singh, V. R.

Sokoloff, L.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiol.-Heart C. 234, H59–H66 (1978).

Song, S.

Soria, J.

A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
[CrossRef]

Steenbergen, W.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[CrossRef] [PubMed]

Stough, C. K.

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[CrossRef] [PubMed]

Stromberg, T.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[CrossRef] [PubMed]

Szeto, D. P.

Takahashi, K.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
[CrossRef]

Tankam, P.

Tessier, G.

Thompson, O. B.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[CrossRef] [PubMed]

Uemura, K.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
[CrossRef]

Upatnieks, J.

E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. A 52, 1123–1128 (1962).
[CrossRef]

Verpillat, F.

Verrier, N.

Vitalis, T.

M. Atlan, M. Gross, T. Vitalis, A. Rancillac, J. Rossier, A. Boccara, “High-speed wave-mixing laser doppler imaging in vivo,” Opt. Lett. 33, 842–844 (2008).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

von Bally, G.

Wang, M.

Warnasooriya, N.

Webster, S.

J. D. Briers, S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

Weinstein, B. M.

S. Isogai, M. Horiguchi, B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol. 230, 278–301 (2001).
[CrossRef] [PubMed]

Westerfield, M.

M. Westerfield, The Zebrafish Book: a Guide for the Laboratory use of Zebrafish (Danio rerio) (Institute of Neuroscience. University of Oregon, 1995).

Whelan, M.

S. Joseph, J.-M. Gineste, M. Whelan, D. Newport, “A heterodyne mach-zehnder interferometer employing static and dynamic phase demodulation techniques for live-cell imaging,” Proc. SPIE 7554, 75540P (2010).
[CrossRef]

Xu, W.

W. Xu, M. Jericho, I. Meinertzhagen, H. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

Yamashita, Y.

H. Iwai, T. Yamauchi, M. Miwa, Y. Yamashita, “Doppler-spectrally encoded imaging of translational objects,” Opt. Commmun. 319, 159–169 (2014).
[CrossRef]

Yamauchi, T.

H. Iwai, T. Yamauchi, M. Miwa, Y. Yamashita, “Doppler-spectrally encoded imaging of translational objects,” Opt. Commmun. 319, 159–169 (2014).
[CrossRef]

Yang, G.

Yeh, Y.

Y. Yeh, H. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[CrossRef]

Yuan, S.

Zeng, Y.

Am. J. Physiol.-Heart C.

O. Sakurada, C. Kennedy, J. Jehle, J. Brown, G. L. Carbin, L. Sokoloff, “Measurement of local cerebral blood flow with iodo [14c] antipyrine,” Am. J. Physiol.-Heart C. 234, H59–H66 (1978).

Ann. Biomed. Eng.

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40, 367–377 (2012).
[CrossRef]

Appl. Opt.

S. Yuan, A. Devor, D. A. Boas, A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823–1830 (2005).
[CrossRef] [PubMed]

U. Schnars, W. Jüptner, “Direct recording of holograms by a ccd target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef] [PubMed]

N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, “Digital in-line holography in thick optical systems: application to visualization in pipes,” Appl. Opt. 47, 4147–4157 (2008).
[CrossRef] [PubMed]

Y. Pu, H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697–7708 (2005).
[CrossRef] [PubMed]

B. Kemper, G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[CrossRef] [PubMed]

P. Picart, J. Leval, D. Mounier, S. Gougeon, “Some opportunities for vibration analysis with time averaging in digital fresnel holography,” Appl. Opt. 44, 337–343 (2005).
[CrossRef] [PubMed]

J. Leval, P. Picart, J. P. Boileau, J. C. Pascal, “Full-field vibrometry with digital fresnel holography,” Appl. Opt. 44, 5763–5772 (2005).
[CrossRef] [PubMed]

A. Asundi, V. R. Singh et al., “Time-averaged in-line digital holographic interferometry for vibration analysis,” Appl. Opt. 45, 2391–2395 (2006).
[CrossRef] [PubMed]

M. Lesaffre, N. Verrier, M. Gross, “Noise and signal scaling factors in digital holography in weak illumination: relationship with shot noise,” Appl. Opt. 52, A81–A91 (2013).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[CrossRef]

Appl. Phys. Lett.

Y. Yeh, H. Cummins, “Localized fluid flow measurements with an he-ne laser spectrometer,” Appl. Phys. Lett. 4, 176–178 (1964).
[CrossRef]

Biomed. Opt. Express

Dev. Biol.

S. Isogai, M. Horiguchi, B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol. 230, 278–301 (2001).
[CrossRef] [PubMed]

Exp. Fluids

A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
[CrossRef]

J Cerebr. Blood F. Met.

I. Kanno, H. Iida, S. Miura, M. Murakami, K. Takahashi, H. Sasaki, A. Inugami, F. Shishido, K. Uemura, “A system for cerebral blood flow measurement using an h215o autoradiographic method and positron emission tomography,” J Cerebr. Blood F. Met. 7, 143–153 (1987).
[CrossRef]

J. Biomed. Opt.

J. D. Briers, S. Webster, “Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18, 066018 (2013).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

M. Atlan, B. C. Forget, A. C. Boccara, T. Vitalis, A. Rancillac, A. K. Dunn, M. Gross, “Cortical blood flow assessment with frequency-domain laser doppler microscopy,” J. Biomed. Opt. 12, 024019 (2007).
[CrossRef] [PubMed]

J. DisplayTechnol.

F. Verpillat, F. Joud, M. Atlan, M. Gross, “Digital holography at shot noise level,” J. DisplayTechnol. 6, 455–464 (2010).

J. Europ. Opt. Soc. Rapid pub.

M. Atlan, M. Gross, J. Leng, “Laser doppler imaging of microflow,” J. Europ. Opt. Soc. Rapid pub. 1, 06025 (2006).
[CrossRef]

J. Opt. Soc. Am. A

E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. A 52, 1123–1128 (1962).
[CrossRef]

Nature

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Ophthalmology

E. Friedman, S. Krupsky, A. Lane, S. Oak, E. Friedman, K. Egan, E. Gragoudas, “Ocular blood flow velocity in age-related macular degeneration,” Ophthalmology 102, 640–646 (1995).
[CrossRef] [PubMed]

Opt. Commmun.

H. Iwai, T. Yamauchi, M. Miwa, Y. Yamashita, “Doppler-spectrally encoded imaging of translational objects,” Opt. Commmun. 319, 159–169 (2014).
[CrossRef]

Opt. Express

Opt. Lett.

F. Le Clerc, L. Collot, M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
[CrossRef]

M. Atlan, M. Gross, E. Absil, “Accurate phase-shifting digital interferometry,” Opt. Lett. 32, 1456–1458 (2007).
[CrossRef] [PubMed]

Y. Zeng, M. Wang, G. Feng, X. Liang, G. Yang, “Laser speckle imaging based on intensity fluctuation modulation,” Opt. Lett. 38, 1313–1315 (2013).
[CrossRef] [PubMed]

M. Atlan, M. Gross, T. Vitalis, A. Rancillac, J. Rossier, A. Boccara, “High-speed wave-mixing laser doppler imaging in vivo,” Opt. Lett. 33, 842–844 (2008).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

N. Verrier, M. Atlan, “Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator,” Opt. Lett. 38, 739–741 (2013).
[CrossRef] [PubMed]

N. Verrier, M. Gross, M. Atlan, “Phase-resolved heterodyne holographic vibrometry with a strobe local oscillator,” Opt. Lett. 38, 377–379 (2013).
[CrossRef] [PubMed]

M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, A. K. Dunn, “Frequency-domain wide-field laser doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006).
[CrossRef] [PubMed]

M. Simonutti, M. Paques, J.-A. Sahel, M. Gross, B. Samson, C. Magnain, M. Atlan, “Holographic laser doppler ophthalmoscopy,” Opt. Lett. 35, 1941–1943 (2010).
[CrossRef] [PubMed]

C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, M. S. Feld, “Imaging voltage-dependent cell motions with heterodyne mach-zehnder phase microscopy,” Opt. Lett. 32, 1572–1574 (2007).
[CrossRef] [PubMed]

Physiol. Meas.

J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. USA

W. Xu, M. Jericho, I. Meinertzhagen, H. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

Proc. R. Soc. A

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197, 454–487 (1949).
[CrossRef]

Proc. SPIE

S. Joseph, J.-M. Gineste, M. Whelan, D. Newport, “A heterodyne mach-zehnder interferometer employing static and dynamic phase demodulation techniques for live-cell imaging,” Proc. SPIE 7554, 75540P (2010).
[CrossRef]

Prog. Retin. Eye Res.

J. Kur, E. A. Newman, T. Chan-Ling, “Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease,” Prog. Retin. Eye Res. 31, 377–406 (2012).
[CrossRef] [PubMed]

Rev. of Sci. Instrum.

M. Atlan, M. Gross, “Laser doppler imaging, revisited,” Rev. of Sci. Instrum. 77, 116103 (2006).
[CrossRef]

Sensors

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170–4191 (2013).
[CrossRef] [PubMed]

SPIE Reviews

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).

Stroke

M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, A. Pipingas, “Cardiovascular disease risk and cerebral blood flow velocity,” Stroke 43, 2803–2805 (2012).
[CrossRef] [PubMed]

Other

M. Westerfield, The Zebrafish Book: a Guide for the Laboratory use of Zebrafish (Danio rerio) (Institute of Neuroscience. University of Oregon, 1995).

Supplementary Material (3)

» Media 1: AVI (1539 KB)     
» Media 2: AVI (1367 KB)     
» Media 3: AVI (7296 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Heterodyne digital holographic microscopy experimental arrangement (a) Injection part of the interferometer. HWP: half wave plate; PBS: polarizing beam splitter; AOM1, AOM2: acousto optic modulators (Bragg cells). (b) Classical upright microscope used for the off-axis recombinaison of reference and object beams. BS: cube beam splitter; CCD: CCD camera.

Fig. 2
Fig. 2

Detection of zebrafish embryo blood flow in transmission geometry. (a) Illustration of the spectral broadening of light encountering moving scattering objects (here, red blood cells). (b) Principles of the spectral measurement by heterodyne digital holography.

Fig. 3
Fig. 3

Spatial filtering and reconstruction principle. Holograms H(x, y) (a), H1(kx, ky) (b), H2(kx, ky) (c) and H3(x, y, z = 0) (d): see Media 1. The display is made in arbitrary Log scale for the average intensity 〈|HX|2〉. This average is calculated made by making the reconstruction with I0..I3, with I1..I4... and with I28..I31, and by averaging the resulting |HX|2. Images (a) and (d) show a side view of a 6 days old zebrafish embryo. Ventral side in on the right and anterior is up.

Fig. 4
Fig. 4

Two phase detection efficiency |η|2 as a function of the LO versus signal frequency offset: x. Calculation is made by Eq. 6 with TCCD = 100 ms and Texp = 50 ms.

Fig. 5
Fig. 5

Reconstructed hologram H3(x, y, z = 0) made for (ωLOωI)/(2π) = 0 Hz (a): see also Media 2, 10 Hz (b) ... to 80 Hz (i). Images (a) to (i) are displayed with the same Log scale for the average intensity 〈|H3|2〉. The sample is the same as the one in Fig. 3.

Fig. 6
Fig. 6

Dependance of the Doppler holographic signal 〈|H3(x, y)|2〉 with the frequency off-set (ωLOωI)/(2π) for different location A to F of the reconstructed image of Fig. 3(a). Curves are drawn with linear (a) and logarithmic (b) scales.

Fig. 7
Fig. 7

Fourier space reconstructed hologram H2(kx, ky) made without (a) and with (b,c) selection of the scattered wave vector kS. In (b) the selected zone is oriented toward uφ=0. In (c), three zones oriented along uφ with φ = 0 (blue), 2π/3 (green) and 4π/3 (red) are selected. Display is made in arbitrary log scale for 〈|H2|2〉. Frequency shift is (ωLOωI) = 0.

Fig. 8
Fig. 8

Colored reconstructed hologram H3(x, y, z = 0) made for (ωLOωI)/(2π) = 0 Hz (a), 10 Hz (b) ... to 60 Hz (g), and for −20 Hz (h) and + 20 Hz (i). Images (a) to (g) are made with same zebrafish sample and same viewpoint as Fig. 3 and Fig. 5. Images (h) to (i) correspond to another fish embryo. Images (a) to (g) (and (h) and (i)) are displayed with the same color RGB Log scale for the average intensity 〈|H3|2〉. Media 3 corresponds to images (h) and (i).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ω S ω I = q.v
H ( x , y ) = [ I 0 ( x , y ) I 2 ( x , y ) ] + j [ I 1 ( x , y ) I 3 ( x , y ) ]
H 1 ( k x , k y ) = FFT [ H ( x , y ) e j | k | ( x 2 + y 2 ) / 2 d ]
H 3 ( x , y , z ) = FFT 1 [ H 2 ( k x , k y ) e j ( k x 2 + k y 2 ) / 2 z ]
Δ ω = ω L O ω I = m ω CCD H ( x , y ) = I 0 ( x , y ) I 1 ( x , y )
η ( x ) = 1 2 T exp k = 0 1 ( 1 ) k t = k T CCD T exp / 2 k T CCD + T exp / 2 e j 2 π x t d t = 1 2 sinc ( π x T exp ) [ 1 e j 2 π x T CCD ]

Metrics