Abstract

We present an approach for the efficient design of polarization insensitive polymeric optical waveguide devices considering stress-induced effects. In this approach, the stresses induced in the waveguide during the fabrication process are estimated first using a more realistic model in the finite element analysis. Then we determine the perturbations in the material refractive indices caused by the stress-optic effect. It is observed that the stresses cause non-uniform optical anisotropy in the waveguide materials, which is then incorporated in the modal analysis considering a multilayer structure of waveguide. The approach is exploited in the design of a Bragg grating on strip waveguide. Excellent agreement between calculated and published experimental results confirms the feasibility of our approach in the accurate design of polarization insensitive polymer waveguide devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ma, A. K.-Y. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [CrossRef]
  2. L. Eldada, L. W. Shacklette, “Advances in polymer integeated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
    [CrossRef]
  3. Y. Zhang, C. Yang, S. Li, H. Yan, J. Yin, C. Gu, G. Jin, “Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates,” Opt. Express 14(8), 3484–3490 (2006).
    [CrossRef] [PubMed]
  4. W. P. Wong, K. S. Chiang; “Design of polarization-insensitive Bragg Gratings in zero birefringence ridge waveguide,” IEEE J. Quantum Electron. 37(9), 1138–1145 (2001).
    [CrossRef]
  5. M. Huang, “Thermal Stresses in optical waveguides,” Opt. Lett. 28(23), 2327–2329 (2003).
    [CrossRef] [PubMed]
  6. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express 20(22), 24103–24114 (2012).
    [CrossRef] [PubMed]
  7. S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization dependence in polymer waveguide directional couplers,” IEEE Photon. Technol. Lett. 17(7), 1465–1467 (2005).
    [CrossRef]
  8. J.-M. Lee, S. Park, M. H. Lee, J. T. Ahn, J. J. Ju, K. H. Kim, “Simple method to adjust polarization dependence in polymeric arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 15(7), 927–929 (2003).
    [CrossRef]
  9. S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
    [CrossRef]
  10. W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightwave Technol. 23(3), 1308–1318 (2005).
    [CrossRef]
  11. P. Dumais, “Modal birefringence analysis of strained buried-core waveguides,” J. Lightwave Technol. 30(6), 906–912 (2012).
    [CrossRef]
  12. N. Belhadj, Y. Park, S. Larochelle, K. Dossou, J. Azaña, “UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence,” Opt. Express 16(12), 8727–8741 (2008).
    [CrossRef] [PubMed]
  13. K. Saitoh, M. Koshiba, Y. Tsuji, “Stress analysis method for elastically anisotropic material based optical waveguides and its application to strain-induced optical waveguides,” J. Lightwave Technol. 17(2), 255–259 (1999).
    [CrossRef]
  14. H. P. Schriemer, M. Cada, “Modal birefringence and power density distribution in strained buried-core square waveguides,” IEEE J. Quantum Electron. 40(8), 1131–1139 (2004).
    [CrossRef]
  15. M. M. Milosevic, P. S. Matavulj, B. D. Timotijevic, G. T. Reed, G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” J. Lightwave Technol. 26(13), 1840–1846 (2008).
    [CrossRef]
  16. M. F. Hossain, H. P. Chan, M. A. Uddin, R. K. Y. Li, “Stress-induced birefringence characteristics of polymer optical rib waveguides,” J. Lightwave Technol. 27(21), 4678–4685 (2009).
    [CrossRef]
  17. S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
    [CrossRef]
  18. Y. Lin, W. Liu, F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
    [CrossRef]
  19. M. F. Hossain, H. P. Chan, M. A. Uddin, and R. K. Y. Li, “Efficient design of polarization independent polymer optical waveguide devices,” in Proceedings of The 14th OptoElectronics and Communications Conference (OECC) (Hong Kong 2009), paper WA5.
    [CrossRef]
  20. M. Lohmeyer, “Vectorial wave-matching-method mode analysis of integrated optical waveguides,” Opt. Quantum Electron. 30(5/6), 385–396 (1998).
    [CrossRef]
  21. V. Antonucci, A. Cusano, M. Giordano, J. Nasser, L. Nicolais, “Cure-induced residual strain build-up in a thermoset resin,” Composites: Part A 37(4), 592–601 (2006).
    [CrossRef]
  22. M. A. Uddin, H. P. Chan, C. K. Chow, Y. C. Chan, “Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide,” J. Electron. Mater. 33(3), 224–228 (2004).
    [CrossRef]
  23. K. C. Chan, M. Teo, Z. W. Zhong, “Characterization of low-k benzocyclobutene dielectric thin film,” Microelectron. Int. 20(3), 11–22 (2003).
    [CrossRef]
  24. J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, W.-Y. Shih, “On-wafer characterization of thermomechanical properties of dielectric thin films by a bending beam technique,” J. Appl. Phys. 88(5), 3029–3038 (2000).
    [CrossRef]
  25. Benzocyclobutene (BCB) thermal and mechanical properties [Online]. Available: http://www.dow.com/cyclotene/solution/thermprop.htm
  26. T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polymer Science part B: Polymer Physics 37(4), 311–321 (1999).
    [CrossRef]
  27. M. F. Hossain, H. P. Chan, M. A. Uddin, “Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique,” Appl. Opt. 49(3), 403–408 (2010).
    [CrossRef] [PubMed]
  28. K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12(1), 163–169 (1994).
    [CrossRef]
  29. Y.-L. Shen, S. Suresh, I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
    [CrossRef]

2012 (2)

2010 (1)

2009 (1)

2008 (2)

2006 (4)

V. Antonucci, A. Cusano, M. Giordano, J. Nasser, L. Nicolais, “Cure-induced residual strain build-up in a thermoset resin,” Composites: Part A 37(4), 592–601 (2006).
[CrossRef]

Y. Lin, W. Liu, F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
[CrossRef]

S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
[CrossRef]

Y. Zhang, C. Yang, S. Li, H. Yan, J. Yin, C. Gu, G. Jin, “Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates,” Opt. Express 14(8), 3484–3490 (2006).
[CrossRef] [PubMed]

2005 (2)

W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” J. Lightwave Technol. 23(3), 1308–1318 (2005).
[CrossRef]

S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization dependence in polymer waveguide directional couplers,” IEEE Photon. Technol. Lett. 17(7), 1465–1467 (2005).
[CrossRef]

2004 (3)

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

H. P. Schriemer, M. Cada, “Modal birefringence and power density distribution in strained buried-core square waveguides,” IEEE J. Quantum Electron. 40(8), 1131–1139 (2004).
[CrossRef]

M. A. Uddin, H. P. Chan, C. K. Chow, Y. C. Chan, “Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide,” J. Electron. Mater. 33(3), 224–228 (2004).
[CrossRef]

2003 (3)

K. C. Chan, M. Teo, Z. W. Zhong, “Characterization of low-k benzocyclobutene dielectric thin film,” Microelectron. Int. 20(3), 11–22 (2003).
[CrossRef]

M. Huang, “Thermal Stresses in optical waveguides,” Opt. Lett. 28(23), 2327–2329 (2003).
[CrossRef] [PubMed]

J.-M. Lee, S. Park, M. H. Lee, J. T. Ahn, J. J. Ju, K. H. Kim, “Simple method to adjust polarization dependence in polymeric arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 15(7), 927–929 (2003).
[CrossRef]

2002 (1)

H. Ma, A. K.-Y. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

2001 (1)

W. P. Wong, K. S. Chiang; “Design of polarization-insensitive Bragg Gratings in zero birefringence ridge waveguide,” IEEE J. Quantum Electron. 37(9), 1138–1145 (2001).
[CrossRef]

2000 (2)

L. Eldada, L. W. Shacklette, “Advances in polymer integeated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, W.-Y. Shih, “On-wafer characterization of thermomechanical properties of dielectric thin films by a bending beam technique,” J. Appl. Phys. 88(5), 3029–3038 (2000).
[CrossRef]

1999 (2)

T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polymer Science part B: Polymer Physics 37(4), 311–321 (1999).
[CrossRef]

K. Saitoh, M. Koshiba, Y. Tsuji, “Stress analysis method for elastically anisotropic material based optical waveguides and its application to strain-induced optical waveguides,” J. Lightwave Technol. 17(2), 255–259 (1999).
[CrossRef]

1998 (1)

M. Lohmeyer, “Vectorial wave-matching-method mode analysis of integrated optical waveguides,” Opt. Quantum Electron. 30(5/6), 385–396 (1998).
[CrossRef]

1996 (1)

Y.-L. Shen, S. Suresh, I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
[CrossRef]

1994 (1)

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12(1), 163–169 (1994).
[CrossRef]

Ahn, J. T.

J.-M. Lee, S. Park, M. H. Lee, J. T. Ahn, J. J. Ju, K. H. Kim, “Simple method to adjust polarization dependence in polymeric arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 15(7), 927–929 (2003).
[CrossRef]

Aitchison, J. S.

Allen, S. A. B.

T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polymer Science part B: Polymer Physics 37(4), 311–321 (1999).
[CrossRef]

Antonucci, V.

V. Antonucci, A. Cusano, M. Giordano, J. Nasser, L. Nicolais, “Cure-induced residual strain build-up in a thermoset resin,” Composites: Part A 37(4), 592–601 (2006).
[CrossRef]

Azaña, J.

Belhadj, N.

Blech, I. A.

Y.-L. Shen, S. Suresh, I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
[CrossRef]

Cada, M.

H. P. Schriemer, M. Cada, “Modal birefringence and power density distribution in strained buried-core square waveguides,” IEEE J. Quantum Electron. 40(8), 1131–1139 (2004).
[CrossRef]

Chan, H. P.

M. F. Hossain, H. P. Chan, M. A. Uddin, “Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique,” Appl. Opt. 49(3), 403–408 (2010).
[CrossRef] [PubMed]

M. F. Hossain, H. P. Chan, M. A. Uddin, R. K. Y. Li, “Stress-induced birefringence characteristics of polymer optical rib waveguides,” J. Lightwave Technol. 27(21), 4678–4685 (2009).
[CrossRef]

S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
[CrossRef]

S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization dependence in polymer waveguide directional couplers,” IEEE Photon. Technol. Lett. 17(7), 1465–1467 (2005).
[CrossRef]

M. A. Uddin, H. P. Chan, C. K. Chow, Y. C. Chan, “Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide,” J. Electron. Mater. 33(3), 224–228 (2004).
[CrossRef]

Chan, K. C.

K. C. Chan, M. Teo, Z. W. Zhong, “Characterization of low-k benzocyclobutene dielectric thin film,” Microelectron. Int. 20(3), 11–22 (2003).
[CrossRef]

Chan, Y. C.

M. A. Uddin, H. P. Chan, C. K. Chow, Y. C. Chan, “Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide,” J. Electron. Mater. 33(3), 224–228 (2004).
[CrossRef]

Cheben, P.

Cheng, S. Y.

S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
[CrossRef]

S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization dependence in polymer waveguide directional couplers,” IEEE Photon. Technol. Lett. 17(7), 1465–1467 (2005).
[CrossRef]

Chiang, K. S.

S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
[CrossRef]

S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization dependence in polymer waveguide directional couplers,” IEEE Photon. Technol. Lett. 17(7), 1465–1467 (2005).
[CrossRef]

W. P. Wong, K. S. Chiang; “Design of polarization-insensitive Bragg Gratings in zero birefringence ridge waveguide,” IEEE J. Quantum Electron. 37(9), 1138–1145 (2001).
[CrossRef]

Chow, C. K.

M. A. Uddin, H. P. Chan, C. K. Chow, Y. C. Chan, “Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide,” J. Electron. Mater. 33(3), 224–228 (2004).
[CrossRef]

Cusano, A.

V. Antonucci, A. Cusano, M. Giordano, J. Nasser, L. Nicolais, “Cure-induced residual strain build-up in a thermoset resin,” Composites: Part A 37(4), 592–601 (2006).
[CrossRef]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Dossou, K.

Dumais, P.

Eldada, L.

L. Eldada, L. W. Shacklette, “Advances in polymer integeated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Fernandes, L. A.

Fetterman, H. R.

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

Fischer, K.

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12(1), 163–169 (1994).
[CrossRef]

Gang, S.-J.

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

Geary, K.

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

Giordano, M.

V. Antonucci, A. Cusano, M. Giordano, J. Nasser, L. Nicolais, “Cure-induced residual strain build-up in a thermoset resin,” Composites: Part A 37(4), 592–601 (2006).
[CrossRef]

Grenier, J. R.

Gu, C.

Herman, P. R.

Ho, P. S.

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, W.-Y. Shih, “On-wafer characterization of thermomechanical properties of dielectric thin films by a bending beam technique,” J. Appl. Phys. 88(5), 3029–3038 (2000).
[CrossRef]

Hodge, T. C.

T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polymer Science part B: Polymer Physics 37(4), 311–321 (1999).
[CrossRef]

Hoffmann, R.

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12(1), 163–169 (1994).
[CrossRef]

Hossain, M. F.

Huang, M.

Janz, S.

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Jin, G.

Ju, J. J.

J.-M. Lee, S. Park, M. H. Lee, J. T. Ahn, J. J. Ju, K. H. Kim, “Simple method to adjust polarization dependence in polymeric arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 15(7), 927–929 (2003).
[CrossRef]

Kim, K. H.

J.-M. Lee, S. Park, M. H. Lee, J. T. Ahn, J. J. Ju, K. H. Kim, “Simple method to adjust polarization dependence in polymeric arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 15(7), 927–929 (2003).
[CrossRef]

Kim, S.-K.

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

Kohl, P. A.

T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polymer Science part B: Polymer Physics 37(4), 311–321 (1999).
[CrossRef]

Koshiba, M.

Lamontagne, B.

Larochelle, S.

Lee, D.-G.

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

Lee, J.-M.

J.-M. Lee, S. Park, M. H. Lee, J. T. Ahn, J. J. Ju, K. H. Kim, “Simple method to adjust polarization dependence in polymeric arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 15(7), 927–929 (2003).
[CrossRef]

Lee, M. H.

J.-M. Lee, S. Park, M. H. Lee, J. T. Ahn, J. J. Ju, K. H. Kim, “Simple method to adjust polarization dependence in polymeric arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 15(7), 927–929 (2003).
[CrossRef]

Li, R. K. Y.

Li, S.

Lin, Y.

Y. Lin, W. Liu, F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
[CrossRef]

Liu, W.

Y. Lin, W. Liu, F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
[CrossRef]

Lohmeyer, M.

M. Lohmeyer, “Vectorial wave-matching-method mode analysis of integrated optical waveguides,” Opt. Quantum Electron. 30(5/6), 385–396 (1998).
[CrossRef]

Ma, H.

H. Ma, A. K.-Y. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Marques, P. V. S.

Mashanovich, G. Z.

Matavulj, P. S.

McKerrow, A. J.

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, W.-Y. Shih, “On-wafer characterization of thermomechanical properties of dielectric thin films by a bending beam technique,” J. Appl. Phys. 88(5), 3029–3038 (2000).
[CrossRef]

Milosevic, M. M.

Müller, J.

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12(1), 163–169 (1994).
[CrossRef]

Nasser, J.

V. Antonucci, A. Cusano, M. Giordano, J. Nasser, L. Nicolais, “Cure-induced residual strain build-up in a thermoset resin,” Composites: Part A 37(4), 592–601 (2006).
[CrossRef]

Nicolais, L.

V. Antonucci, A. Cusano, M. Giordano, J. Nasser, L. Nicolais, “Cure-induced residual strain build-up in a thermoset resin,” Composites: Part A 37(4), 592–601 (2006).
[CrossRef]

Oh, I.

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

Park, G.-C.

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

Park, S.

J.-M. Lee, S. Park, M. H. Lee, J. T. Ahn, J. J. Ju, K. H. Kim, “Simple method to adjust polarization dependence in polymeric arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 15(7), 927–929 (2003).
[CrossRef]

Park, Y.

Picard, M.-J.

Reed, G. T.

Ryan, T.

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, W.-Y. Shih, “On-wafer characterization of thermomechanical properties of dielectric thin films by a bending beam technique,” J. Appl. Phys. 88(5), 3029–3038 (2000).
[CrossRef]

Saitoh, K.

Salle, D.

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12(1), 163–169 (1994).
[CrossRef]

Schriemer, H. P.

H. P. Schriemer, M. Cada, “Modal birefringence and power density distribution in strained buried-core square waveguides,” IEEE J. Quantum Electron. 40(8), 1131–1139 (2004).
[CrossRef]

Shacklette, L. W.

L. Eldada, L. W. Shacklette, “Advances in polymer integeated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

Shen, Y.-L.

Y.-L. Shen, S. Suresh, I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
[CrossRef]

Shi, F. G.

Y. Lin, W. Liu, F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
[CrossRef]

Shih, W.-Y.

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, W.-Y. Shih, “On-wafer characterization of thermomechanical properties of dielectric thin films by a bending beam technique,” J. Appl. Phys. 88(5), 3029–3038 (2000).
[CrossRef]

Steier, W. H.

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

Suresh, S.

Y.-L. Shen, S. Suresh, I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
[CrossRef]

Tarr, N. G.

Teo, M.

K. C. Chan, M. Teo, Z. W. Zhong, “Characterization of low-k benzocyclobutene dielectric thin film,” Microelectron. Int. 20(3), 11–22 (2003).
[CrossRef]

Timotijevic, B. D.

Tsuji, Y.

Uddin, M. A.

Wang, C.

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

Wasse, F.

K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12(1), 163–169 (1994).
[CrossRef]

Wong, W. P.

W. P. Wong, K. S. Chiang; “Design of polarization-insensitive Bragg Gratings in zero birefringence ridge waveguide,” IEEE J. Quantum Electron. 37(9), 1138–1145 (2001).
[CrossRef]

Xu, D.-X.

Yan, H.

Yang, C.

Ye, W. N.

Yin, J.

Yuan, W.

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

Zhang, C.

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

Zhang, Y.

Zhao, J.-H.

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, W.-Y. Shih, “On-wafer characterization of thermomechanical properties of dielectric thin films by a bending beam technique,” J. Appl. Phys. 88(5), 3029–3038 (2000).
[CrossRef]

Zhong, Z. W.

K. C. Chan, M. Teo, Z. W. Zhong, “Characterization of low-k benzocyclobutene dielectric thin film,” Microelectron. Int. 20(3), 11–22 (2003).
[CrossRef]

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Appl. Opt. (1)

Composites: Part A (1)

V. Antonucci, A. Cusano, M. Giordano, J. Nasser, L. Nicolais, “Cure-induced residual strain build-up in a thermoset resin,” Composites: Part A 37(4), 592–601 (2006).
[CrossRef]

Electron. Lett. (1)

S.-K. Kim, K. Geary, W. Yuan, H. R. Fetterman, D.-G. Lee, C. Zhang, C. Wang, W. H. Steier, G.-C. Park, S.-J. Gang, I. Oh, “Stress-induced polymer waveguides operating at both 1.31 and 1.55 µm wavelengths,” Electron. Lett. 40(14), 866–868 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

W. P. Wong, K. S. Chiang; “Design of polarization-insensitive Bragg Gratings in zero birefringence ridge waveguide,” IEEE J. Quantum Electron. 37(9), 1138–1145 (2001).
[CrossRef]

H. P. Schriemer, M. Cada, “Modal birefringence and power density distribution in strained buried-core square waveguides,” IEEE J. Quantum Electron. 40(8), 1131–1139 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada, L. W. Shacklette, “Advances in polymer integeated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization dependence in polymer waveguide directional couplers,” IEEE Photon. Technol. Lett. 17(7), 1465–1467 (2005).
[CrossRef]

J.-M. Lee, S. Park, M. H. Lee, J. T. Ahn, J. J. Ju, K. H. Kim, “Simple method to adjust polarization dependence in polymeric arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 15(7), 927–929 (2003).
[CrossRef]

IEEE Trans. Adv. Packag. (1)

Y. Lin, W. Liu, F. G. Shi, “Adhesive joint design for minimizing fiber alignment shift during UV curing,” IEEE Trans. Adv. Packag. 29(3), 520–524 (2006).
[CrossRef]

J. Appl. Phys. (2)

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, W.-Y. Shih, “On-wafer characterization of thermomechanical properties of dielectric thin films by a bending beam technique,” J. Appl. Phys. 88(5), 3029–3038 (2000).
[CrossRef]

Y.-L. Shen, S. Suresh, I. A. Blech, “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” J. Appl. Phys. 80(3), 1388–1398 (1996).
[CrossRef]

J. Electron. Mater. (1)

M. A. Uddin, H. P. Chan, C. K. Chow, Y. C. Chan, “Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide,” J. Electron. Mater. 33(3), 224–228 (2004).
[CrossRef]

J. Lightwave Technol. (6)

J. Polymer Science part B: Polymer Physics (1)

T. C. Hodge, S. A. B. Allen, P. A. Kohl, “In situ measurement of the thermal expansion behavior of benzocyclobutene films,” J. Polymer Science part B: Polymer Physics 37(4), 311–321 (1999).
[CrossRef]

Microelectron. Int. (1)

K. C. Chan, M. Teo, Z. W. Zhong, “Characterization of low-k benzocyclobutene dielectric thin film,” Microelectron. Int. 20(3), 11–22 (2003).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

S. Y. Cheng, K. S. Chiang, H. P. Chan, “Polarization-insensitive polymer waveguide Bragg gratings,” Microw. Opt. Technol. Lett. 48(2), 334–338 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Lohmeyer, “Vectorial wave-matching-method mode analysis of integrated optical waveguides,” Opt. Quantum Electron. 30(5/6), 385–396 (1998).
[CrossRef]

Other (2)

Benzocyclobutene (BCB) thermal and mechanical properties [Online]. Available: http://www.dow.com/cyclotene/solution/thermprop.htm

M. F. Hossain, H. P. Chan, M. A. Uddin, and R. K. Y. Li, “Efficient design of polarization independent polymer optical waveguide devices,” in Proceedings of The 14th OptoElectronics and Communications Conference (OECC) (Hong Kong 2009), paper WA5.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a Bragg grating on strip channel waveguide. The strip width and height are denoted by w and h, respectively, and Λ is the pitch of the grating.

Fig. 2
Fig. 2

Measured and simulated warpage of BCB thin film sample of size 3.5 × 3.5 cm2.

Fig. 3
Fig. 3

Contour plot of stress distribution in the strip channel of width, w = 3 µm and height, h = 2.9 µm (a) in-plane stress, σ x and (b) out-of-plane stress, σ y .

Fig. 4
Fig. 4

Material in-plane index (nx) as a function of the position (y) along the height of a strip channel (h = 2.9 µm) for different widths (w = 2.25 µm, 3.0 µm and 4.5 µm).

Fig. 5
Fig. 5

Variation of material birefringence (nx - ny) along the height of a strip channel (h = 2.9 µm) for different widths (w) of 2.25 µm, 3.0 µm and 4.5 µm.

Fig. 6
Fig. 6

Material birefringence along the width at three different heights of 0.5 µm, 1.25 µm, and 2.0 µm of a strip waveguide with dimension of w = 3 µm and h = 2.9 µm.

Fig. 7
Fig. 7

Multiple-layered approximation of a strip waveguide.

Fig. 8
Fig. 8

Bragg wavelength difference ( Δ λ B ) between TE and TM polarizations as a function of core width ( w ). The core height ( h ) is 2.9 µm.

Tables (1)

Tables Icon

Table 1 Material properties used in the FE analysis

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n x = n 0 C 1 σ x C 2 ( σ y + σ z ), n y = n 0 C 1 σ y C 2 ( σ x + σ z ),
σ f = E s (1 ν s ) t s 2 6 t f ( 1 R 2 1 R 1 )

Metrics