Abstract

A reconfigurable two-mode mux/demux device in planar waveguide was proposed. The simulated mux/demux extinction ratio was ≥ 35 dB with ≤ 0.4 dB excess loss. The device was realized in polymer materials using the thermo-optic effect. It was characterized via a tunable laser source at 1550 nm. Its mux/demux performance in both routes was demonstrated and compared with the theoretical prediction. The device is easy to implement and has applications in future multimode optical communication systems to further extend transmission capacity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, M. Watanabe, “305 Tb/s Space Division Multiplexed Transmission Using Homogeneous 19-Core Fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
    [CrossRef]
  2. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, M. Watanabe, “Space DivisionMultiplexed Transmission of 109-Tb/s Data Signals Using Homogeneous Seven-Core Fiber,” J. Lightwave Technol. 30(4), 658–665 (2012).
    [CrossRef]
  3. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” in OSA/OFC/NFOEC 2011 (Optical Society of America 2011), paper OWA4.
  4. A. Li, A. Al Amin, X. Chen, W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express 19(9), 8808–8814 (2011).
    [CrossRef] [PubMed]
  5. A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
    [CrossRef] [PubMed]
  6. F. Saitoh, K. Saitoh, M. Koshiba, “A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing,” Opt. Express 18(5), 4709–4716 (2010).
    [CrossRef] [PubMed]
  7. J. Xu, C. Peucheret, J. K. Lyngsø, L. Leick, “Two-mode multiplexing at 2 × 10.7 Gbps over a 7-cell hollow-core photonic bandgap fiber,” Opt. Express 20(11), 12449–12456 (2012).
    [CrossRef] [PubMed]
  8. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle, “Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6x6 MIMO Processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
  9. M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, G. Charlet, “Mode-Division Multiplexing of 2 100 Gb/s Channels Using an LCOS-Based Spatial Modulator,” J. Lightwave Technol. 30(4), 618–623 (2012).
    [CrossRef]
  10. X. Chen, A. Li, J. Ye, A. Al Amin, W. Shieh, “Demonstration of Few-Mode Compatible Optical Add/Drop Multiplexer for Mode-Division Multiplexed Superchannel,” J. Lightwave Technol. 30(4), 641–647 (2012).
  11. H. Kubota, H. Takara, T. Morioka, “T-shaped mode coupler for two-mode mode division multiplexing,” IEICE Electron. Express 8(22), 1927–1932 (2011).
    [CrossRef]
  12. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [CrossRef]
  13. S. Bagheri and W. M. J. Green, “Silicon-on-Insulator Mode-Selective Add-Drop Unit for On-Chip Mode-Division Multiplexing,” in Proceedings of IEEE 6th International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, 2009), pp. 166–168.
    [CrossRef]
  14. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood., “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [CrossRef] [PubMed]
  15. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [CrossRef] [PubMed]
  16. H. Dalir, Y. Yokota, F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” IEICE Electron. Express 8(9), 684–688 (2011).
    [CrossRef]
  17. R. M. de Ridder and C. G. H. Roeloffzen, Wavelength Filters for Fibre Optics, (Springer, 2006), Chap. 9.
  18. J. D. Love, N. Riesen, “Single-, Few-, and Multimode Y-Junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
    [CrossRef]

2013

2012

J. D. Love, N. Riesen, “Single-, Few-, and Multimode Y-Junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
[CrossRef]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle, “Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6x6 MIMO Processing,” J. Lightwave Technol. 30(4), 521–531 (2012).

M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, G. Charlet, “Mode-Division Multiplexing of 2 100 Gb/s Channels Using an LCOS-Based Spatial Modulator,” J. Lightwave Technol. 30(4), 618–623 (2012).
[CrossRef]

X. Chen, A. Li, J. Ye, A. Al Amin, W. Shieh, “Demonstration of Few-Mode Compatible Optical Add/Drop Multiplexer for Mode-Division Multiplexed Superchannel,” J. Lightwave Technol. 30(4), 641–647 (2012).

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, M. Watanabe, “Space DivisionMultiplexed Transmission of 109-Tb/s Data Signals Using Homogeneous Seven-Core Fiber,” J. Lightwave Technol. 30(4), 658–665 (2012).
[CrossRef]

J. Xu, C. Peucheret, J. K. Lyngsø, L. Leick, “Two-mode multiplexing at 2 × 10.7 Gbps over a 7-cell hollow-core photonic bandgap fiber,” Opt. Express 20(11), 12449–12456 (2012).
[CrossRef] [PubMed]

T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
[CrossRef]

2011

H. Kubota, H. Takara, T. Morioka, “T-shaped mode coupler for two-mode mode division multiplexing,” IEICE Electron. Express 8(22), 1927–1932 (2011).
[CrossRef]

H. Dalir, Y. Yokota, F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” IEICE Electron. Express 8(9), 684–688 (2011).
[CrossRef]

A. Li, A. Al Amin, X. Chen, W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express 19(9), 8808–8814 (2011).
[CrossRef] [PubMed]

A. Al Amin, A. Li, S. Chen, X. Chen, G. Gao, W. Shieh, “Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19(17), 16672–16679 (2011).
[CrossRef] [PubMed]

2010

Al Amin, A.

Awaji, Y.

Bigo, S.

Bigot-Astruc, M.

Bolle, C.

Boutin, A.

Brindel, P.

Burrows, E. C.

Charlet, G.

Chen, S.

Chen, X.

Da Ros, F.

Dadap, J. I.

Dalir, H.

H. Dalir, Y. Yokota, F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” IEICE Electron. Express 8(9), 684–688 (2011).
[CrossRef]

Ding, Y.

Driscoll, J. B.

Esmaeelpour, M.

Essiambre, R. J.

Gao, G.

Gnauck, A. H.

Grote, R. R.

Hayashi, T.

Huang, B.

Imamura, K.

Inaba, H.

Ishizaka, Y.

Kanno, A.

Kawaguchi, Y.

Kawanishi, T.

Klaus, W.

Kobayashi, T.

Koebele, C.

Koshiba, M.

Koyama, F.

H. Dalir, Y. Yokota, F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” IEICE Electron. Express 8(9), 684–688 (2011).
[CrossRef]

Kubota, H.

H. Kubota, H. Takara, T. Morioka, “T-shaped mode coupler for two-mode mode division multiplexing,” IEICE Electron. Express 8(22), 1927–1932 (2011).
[CrossRef]

Leick, L.

Li, A.

Lingle, R.

Love, J. D.

Lu, M.

Lyngsø, J. K.

Mardoyan, H.

McCurdy, A. H.

Morioka, T.

H. Kubota, H. Takara, T. Morioka, “T-shaped mode coupler for two-mode mode division multiplexing,” IEICE Electron. Express 8(22), 1927–1932 (2011).
[CrossRef]

Mukasa, K.

Mumtaz, S.

Osgood, R. M.

Ou, H.

Peckham, D. W.

Peucheret, C.

Provost, L.

Puttnam, B. J.

Randel, S.

Riesen, N.

Ryf, R.

Saitoh, F.

Saitoh, K.

Sakaguchi, J.

Salsi, M.

Shieh, W.

Sierra, A.

Sillard, P.

Souhan, B.

Sperti, D.

Sugizaki, R.

Takara, H.

H. Kubota, H. Takara, T. Morioka, “T-shaped mode coupler for two-mode mode division multiplexing,” IEICE Electron. Express 8(22), 1927–1932 (2011).
[CrossRef]

Taru, T.

Tran, P.

Uematsu, T.

Verluise, F.

Wada, N.

Watanabe, M.

Winzer, P. J.

Xu, J.

Ye, J.

Yokota, Y.

H. Dalir, Y. Yokota, F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” IEICE Electron. Express 8(9), 684–688 (2011).
[CrossRef]

IEICE Electron. Express

H. Kubota, H. Takara, T. Morioka, “T-shaped mode coupler for two-mode mode division multiplexing,” IEICE Electron. Express 8(22), 1927–1932 (2011).
[CrossRef]

H. Dalir, Y. Yokota, F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” IEICE Electron. Express 8(9), 684–688 (2011).
[CrossRef]

J. Lightwave Technol.

J. D. Love, N. Riesen, “Single-, Few-, and Multimode Y-Junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
[CrossRef]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle, “Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6x6 MIMO Processing,” J. Lightwave Technol. 30(4), 521–531 (2012).

M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, G. Charlet, “Mode-Division Multiplexing of 2 100 Gb/s Channels Using an LCOS-Based Spatial Modulator,” J. Lightwave Technol. 30(4), 618–623 (2012).
[CrossRef]

X. Chen, A. Li, J. Ye, A. Al Amin, W. Shieh, “Demonstration of Few-Mode Compatible Optical Add/Drop Multiplexer for Mode-Division Multiplexed Superchannel,” J. Lightwave Technol. 30(4), 641–647 (2012).

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, M. Watanabe, “Space DivisionMultiplexed Transmission of 109-Tb/s Data Signals Using Homogeneous Seven-Core Fiber,” J. Lightwave Technol. 30(4), 658–665 (2012).
[CrossRef]

T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
[CrossRef]

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, M. Watanabe, “305 Tb/s Space Division Multiplexed Transmission Using Homogeneous 19-Core Fiber,” J. Lightwave Technol. 31(4), 554–562 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Other

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” in OSA/OFC/NFOEC 2011 (Optical Society of America 2011), paper OWA4.

R. M. de Ridder and C. G. H. Roeloffzen, Wavelength Filters for Fibre Optics, (Springer, 2006), Chap. 9.

S. Bagheri and W. M. J. Green, “Silicon-on-Insulator Mode-Selective Add-Drop Unit for On-Chip Mode-Division Multiplexing,” in Proceedings of IEEE 6th International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, 2009), pp. 166–168.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the RMMD.

Fig. 2
Fig. 2

Cross-sectional view across the (a) two-mode and (b) single-mode regions of the RMMD.

Fig. 3
Fig. 3

Simulation of the basic mux function of the RMMD at 1.55 μm (TE mode) when light is launched at (a) P1 and (b) P2 when the heater is turned off, or at (c) P1 and (d) P2 when the heater is turned on.

Fig. 4
Fig. 4

Simulation of the mux functions by simultaneously launching power into P1 and P2 at an arbitrary power ratio.

Fig. 5
Fig. 5

Simulation of the basic demux function of the RMMD at 1.55 μm (TE mode) when light is launched at port A in the (a) fundamental mode and (b) first-order mode, when the heater is turned off, and in the (c) fundamental mode and (d) first-order mode, when the heater is turned on.

Fig. 6
Fig. 6

Simulation of the demux functions by simultaneously exciting the fundamental and the first order modes at an arbitrary power ratio.

Fig. 7
Fig. 7

Overview of the fabrication process that consists of (a) the formation of BCB and ZP51 as cores and lower cladding layers by spin coating, (b) deposition of a Cr layer by RF sputtering, (c) patterning of photo resist by photolithography, (d) patterning of a Cr layer by wet etching, (e) patterning of BCB by reaction ion etching, (f) removal of Cr and photo resistance by wet etching, (g) formation of ZP51 as an upper cladding layer by spin coating, and (h) placing a heater on top of the waveguide.

Fig. 8
Fig. 8

Captured output mode profile when light is launched at (a) P1 and (b) P2 when the heater is turned off, and at (c) P1 and (d) P2 when the heater is turned ON in the mux process; when light is launched at (e) Port A with the fundamental mode, and at (f) Port A with the first-order mode when the heater is turned OFF; and when light is launched at (g) Port A with the fundamental mode, and at (h) Port A with the first-order mode when the heater is turned ON in the demux process.

Fig. 9
Fig. 9

Measured de-multiplexing extinction ratio varies with the wavelength when the fundamental mode was excited at Port A in TE polarization.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ A P1 A P2 ]=[ cos( ΔβZ/2 ) isin( ΔβZ/2 ) isin( ΔβZ/2 ) cos( ΔβZ/2 ) ][ exp(iβΔL) 0 0 1 ][ 0.5 ± 0.5 ] A PA
P P1,fun = P P2,fir = 1 2 ( sin 2 ( θ+ ΔβZ 2 )+ cos 2 ( θ ΔβZ 2 ) )
P P2,fun = P P1,fir = 1 2 ( sin 2 ( θ ΔβZ 2 )+ cos 2 ( θ+ ΔβZ 2 ) )

Metrics