Abstract

We present the design, fabrication, and characterization of guided-mode resonance (GMR) linear polarizers that operate in the optical communications C-band near a wavelength of 1550 nm. We provide theoretical and experimental spectra using resonant elements fashioned in three material systems. In particular, we investigate silicon nitride resonant gratings and titanium dioxide gratings on glass substrates as well as silicon-on-quartz gratings. These materials exhibit very low losses and are capable of high diffraction efficiencies and extinction ratios; thus, high-power laser applications may be enabled. We present the methods applied to fabricate these GMR devices as well as means to ascertain their fabricated physical parameters. We quantify increased polarizer bandwidth with increased grating refractive-index modulation. The numerical results obtained with the fabricated-device parameters agree well with the experimental measured spectra.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).
  2. X. J. Yu, H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), 4407–4412 (2003).
    [CrossRef]
  3. H. Tamada, T. Doumuki, T. Yamaguchi, S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-microm-wavelength band,” Opt. Lett. 22(6), 419–421 (1997).
    [CrossRef] [PubMed]
  4. Y. Ekinci, H. H. Solak, C. David, H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
    [CrossRef] [PubMed]
  5. J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
    [CrossRef] [PubMed]
  6. G. E. Jellison, H. H. Burke, “The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,” J. Appl. Phys. 60(2), 841–843 (1986).
    [CrossRef]
  7. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [CrossRef]
  8. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics Pub., 2001).
  9. I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
    [CrossRef]
  10. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [CrossRef]
  11. K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
    [CrossRef]
  12. K. J. Lee, J. Curzan, M. Shokooh-Saremi, R. Magnusson, “Resonant wideband polarizer with single silicon layer,” Appl. Phys. Lett. 98(21), 211112 (2011).
    [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  14. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 1942–1948.
  15. M. Shokooh-Saremi, R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32(8), 894–896 (2007).
    [CrossRef] [PubMed]
  16. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [CrossRef]

2011

K. J. Lee, J. Curzan, M. Shokooh-Saremi, R. Magnusson, “Resonant wideband polarizer with single silicon layer,” Appl. Phys. Lett. 98(21), 211112 (2011).
[CrossRef]

2008

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

2007

2006

2005

2003

X. J. Yu, H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), 4407–4412 (2003).
[CrossRef]

1997

1995

1992

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

1989

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

1986

G. E. Jellison, H. H. Burke, “The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,” J. Appl. Phys. 60(2), 841–843 (1986).
[CrossRef]

1980

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[CrossRef]

Avrutsky, I. A.

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

Britton, B.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Burke, H. H.

G. E. Jellison, H. H. Burke, “The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,” J. Appl. Phys. 60(2), 841–843 (1986).
[CrossRef]

Chen, L.

Curzan, J.

K. J. Lee, J. Curzan, M. Shokooh-Saremi, R. Magnusson, “Resonant wideband polarizer with single silicon layer,” Appl. Phys. Lett. 98(21), 211112 (2011).
[CrossRef]

David, C.

Deng, J.

Deng, X.

Ding, Y.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Donkor, E.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Doumuki, T.

Ekinci, Y.

Gaylord, T. K.

Grann, E. B.

Jellison, G. E.

G. E. Jellison, H. H. Burke, “The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,” J. Appl. Phys. 60(2), 841–843 (1986).
[CrossRef]

Kwok, H. S.

X. J. Yu, H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), 4407–4412 (2003).
[CrossRef]

LaComb, R.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Lee, K. J.

K. J. Lee, J. Curzan, M. Shokooh-Saremi, R. Magnusson, “Resonant wideband polarizer with single silicon layer,” Appl. Phys. Lett. 98(21), 211112 (2011).
[CrossRef]

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[CrossRef]

Liu, F.

Magnusson, R.

K. J. Lee, J. Curzan, M. Shokooh-Saremi, R. Magnusson, “Resonant wideband polarizer with single silicon layer,” Appl. Phys. Lett. 98(21), 211112 (2011).
[CrossRef]

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

M. Shokooh-Saremi, R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32(8), 894–896 (2007).
[CrossRef] [PubMed]

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

Matsumoto, S.

Moharam, M. G.

Pommet, D. A.

Sciortino, P.

Shokooh-Saremi, M.

K. J. Lee, J. Curzan, M. Shokooh-Saremi, R. Magnusson, “Resonant wideband polarizer with single silicon layer,” Appl. Phys. Lett. 98(21), 211112 (2011).
[CrossRef]

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

M. Shokooh-Saremi, R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32(8), 894–896 (2007).
[CrossRef] [PubMed]

Sigg, H.

Silva, H.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

Solak, H. H.

Sychugov, V. A.

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

Tamada, H.

Wang, J. J.

Wang, S. S.

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

Yamaguchi, T.

Yu, X. J.

X. J. Yu, H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), 4407–4412 (2003).
[CrossRef]

Zhang, W.

Appl. Phys. Lett.

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[CrossRef]

K. J. Lee, J. Curzan, M. Shokooh-Saremi, R. Magnusson, “Resonant wideband polarizer with single silicon layer,” Appl. Phys. Lett. 98(21), 211112 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008).
[CrossRef]

J. Appl. Phys.

G. E. Jellison, H. H. Burke, “The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths,” J. Appl. Phys. 60(2), 841–843 (1986).
[CrossRef]

X. J. Yu, H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93(8), 4407–4412 (2003).
[CrossRef]

J. Mod. Opt.

I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. Ref. Data

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[CrossRef]

Opt. Express

Opt. Lett.

Other

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics Pub., 2001).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE Conference on Neural Networks (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 1942–1948.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Calculated spectral response of the PECVD-prepared Si3N4 GMR polarizer for TE and TM polarizations. Inset shows a schematic of a resonance polarizer. Parameters: thickness d1 = 324 nm, d2 = 270 nm; refractive index nH = 1.80, nL = 1.00, nC = 1.00, nS = 1.50; grating period Λ = 1006 nm; fill factor F = 0.43; incident angle θin = 0° Πnormal incidence|.

Fig. 2
Fig. 2

Calculated spectral response of the sputter-prepared Si3N4 GMR polarizer for TE and TM polarizations. Inset shows a schematic of a resonance polarizer. Parameters: thickness d1 = 302 nm, d2 = 162 nm; refractive index nH = 1.98, nL = 1.00, nC = 1.00, nS = 1.50; grating period Λ = 997 nm; fill factor F = 0.45; incident angle θin = 0° Πnormal incidence|.

Fig. 3
Fig. 3

Calculated spectral response of the sputter-prepared Si3N4 GMR polarizer for TE polarizations when values of the device parameters are changed from their original values.

Fig. 4
Fig. 4

Calculated spectral response of the TiO2 GMR polarizer for TE and TM polarizations. Inset shows a schematic of a resonance polarizer. Parameters: thickness d1 = 300 nm, d2 = 83 nm; refractive index nH = 2.24, nL = 1.00, nC = 1.00, nS = 1.50; grating period Λ = 994 nm; fill factor F = 0.43; incident angle θin = 0° Πnormal incidence|;

Fig. 5
Fig. 5

Calculated spectral response of the Si GMR polarizer for TE and TM polarizations. Inset shows a schematic of a resonance polarizer. Parameters: thickness d1 = 123 nm, d2 = 258 nm, d3 = 123 nm; refractive index nH(Si) = 3.48, nL = 1.44, nC = 1.00, nS = 1.44; grating period Λ = 766 nm; fill factor F1 = 0.061, F2 = 0.393, F3 = 0.061, F4 = 0.484; incident angle θin = 0° Πnormal incidence|.

Fig. 6
Fig. 6

(a) Fabrication process of the Si3N4 and TiO2 GMR polarizers. Fabrication process of the Si GMR polarizer slightly differs as the substrate is etched first. (b) Physical dimensions for a fabricated device.

Fig. 7
Fig. 7

AFM image and corresponding profile of the fabricated PECVD-prepared Si3N4 GMR polarizer. By using a cross-section image, the grating period and the etching depth of the fabricated GMR polarizer can be measured. The image shows that the depth is 310 nm.

Fig. 8
Fig. 8

Theoretical and experimental spectral response of the fabricated PECVD-prepared Si3N4 GMR polarizer for both TE and TM polarizations. The resonance wavelength for TE polarization is ~1565 nm. The device parameters for the theoretical calculation are extracted from the AFM images. The experimental data is corrected for a ~4% reflection at the backside of the substrate.

Fig. 9
Fig. 9

Theoretical and experimental spectral response of the fabricated sputter-prepared Si3N4 GMR polarizer for TE and TM polarizations. The resonance wavelength for TE polarization is ~1584 nm. The device parameters for the theoretical calculation are extracted from the AFM images.

Fig. 10
Fig. 10

SEM images after PR/TiO2 etching. The PR layer remains on the etched TiO2 grating. After removing this PR residual layer, the TiO2 GMR polarizer is obtained. (a) Magnification = 10,000; (b) Magnification = 40,000.

Fig. 11
Fig. 11

Measured spectral responses of the fabricated TiO2 GMR polarizer. The resonance wavelength for TE polarization is ~1711 nm due to the under-etched, much thicker TiO2 homogeneous layer (d2). The device parameters for the theoretical calculation are extracted from the AFM images.

Fig. 12
Fig. 12

Measured spectral responses of the fabricated Si GMR polarizer. The resonance wavelength for TE polarization is ~1500 nm due to the thin Si layer (d3). The device parameters for the theoretical calculation are extracted from the AFM images.

Fig. 13
Fig. 13

AFM image and corresponding profile of the fabricated Si GMR polarizer (a) before Si thin-film deposition and (b) after Si thin-film deposition.

Fig. 14
Fig. 14

SEM image of the fabricated Si GMR polarizer, which shows that thickness d1 and d3 are different. The fabricated thickness of d3 is thinner than its designed thickness.

Tables (1)

Tables Icon

Table 1 Resonance Wavelengths and Bandwidths

Metrics