Abstract

A new approach to experimentally investigate laser-induced periodic surface structures (LIPSSs) is introduced. Silicon was iteratively exposed to femtosecond laser pulses at λ = 800 nm and normal incidence in ambient air and at a fluence slightly over the single-pulse modification threshold. After each laser pulse, the topography of the surface was inspected by confocal microscopy. Subsequently, the sample was reproducibly repositioned in the laser setup, to be exposed to the next laser pulse. By this approach, the initiation and spatial evolution (“growth”) of the LIPSSs were analyzed as function of the number of pulses applied. It was found that, after the first laser pulses, the ridges of the LIPSSs elevate, and valleys between the ridges deepen, by a few tens of nanometers relative to the initial surface. An electromagnetic model, discussed in earlier works, predicted that the spatial periodicity of LIPSSs decreases with the number of laser pulses applied. This implies material transport and reorganization of the irradiated material on the surface, due to each laser pulse. However, our experiments show a negligible shift of the lateral positions of the LIPSSs on the surface.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [CrossRef]
  2. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
    [CrossRef] [PubMed]
  3. G. Daminelli, J. Krüger, W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
    [CrossRef]
  4. J. Reif, O. Varlamova, F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
    [CrossRef]
  5. A. Y. Vorobyev, C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [CrossRef]
  6. D. Scorticati, G.-W. Römer, D. F. de Lange, B. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).
    [CrossRef]
  7. J. Eichstädt, G. R. B. E. Römer, A. J. H. in’t Veld, “Towards friction control using laser-induced periodic surface structures,” Phys. Procedia. 12, 7–15 (2011).
    [CrossRef]
  8. E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
    [CrossRef] [PubMed]
  9. J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [CrossRef]
  10. J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
    [CrossRef]
  11. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
    [CrossRef]
  12. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [CrossRef] [PubMed]
  13. J. Bonse, J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
    [CrossRef]
  14. J. Bonse, A. Rosenfeld, J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [CrossRef]
  15. J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: FDTD-feedback simulations,” J. Appl. Phys. 115, 103102 (2014).
    [CrossRef]
  16. A. Borowiec, M. Couillard, G. A. Botton, H. K. Haugen, “Sub-surface damage in indium phosphide caused by micromachining of grooves with femtosecond and nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79, 1887–1890 (2004).
  17. H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced coherent modulation of solid and liquid surfaces,” JOL 30, 446–471 (1985).
  18. L. V. Zhigilei, http://www.faculty.virginia.edu/CompMat/Resources.html .

2014 (1)

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: FDTD-feedback simulations,” J. Appl. Phys. 115, 103102 (2014).
[CrossRef]

2012 (3)

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[CrossRef]

J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[CrossRef]

D. Scorticati, G.-W. Römer, D. F. de Lange, B. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).
[CrossRef]

2011 (1)

J. Eichstädt, G. R. B. E. Römer, A. J. H. in’t Veld, “Towards friction control using laser-induced periodic surface structures,” Phys. Procedia. 12, 7–15 (2011).
[CrossRef]

2010 (2)

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[CrossRef] [PubMed]

J. Bonse, J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[CrossRef]

2009 (2)

J. Bonse, A. Rosenfeld, J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

2008 (3)

J. Reif, O. Varlamova, F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[CrossRef]

A. Y. Vorobyev, C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
[CrossRef] [PubMed]

2004 (2)

G. Daminelli, J. Krüger, W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[CrossRef]

A. Borowiec, M. Couillard, G. A. Botton, H. K. Haugen, “Sub-surface damage in indium phosphide caused by micromachining of grooves with femtosecond and nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79, 1887–1890 (2004).

1985 (1)

H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced coherent modulation of solid and liquid surfaces,” JOL 30, 446–471 (1985).

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Audouard, E.

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Bonse, J.

J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[CrossRef]

J. Bonse, J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[CrossRef]

J. Bonse, A. Rosenfeld, J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

Borowiec, A.

A. Borowiec, M. Couillard, G. A. Botton, H. K. Haugen, “Sub-surface damage in indium phosphide caused by micromachining of grooves with femtosecond and nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79, 1887–1890 (2004).

Botton, G. A.

A. Borowiec, M. Couillard, G. A. Botton, H. K. Haugen, “Sub-surface damage in indium phosphide caused by micromachining of grooves with femtosecond and nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79, 1887–1890 (2004).

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Colombier, J. P.

Costache, F.

J. Reif, O. Varlamova, F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[CrossRef]

Couillard, M.

A. Borowiec, M. Couillard, G. A. Botton, H. K. Haugen, “Sub-surface damage in indium phosphide caused by micromachining of grooves with femtosecond and nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79, 1887–1890 (2004).

Daminelli, G.

G. Daminelli, J. Krüger, W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[CrossRef]

De Hosson, J. T. M.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[CrossRef]

de Lange, D. F.

D. Scorticati, G.-W. Römer, D. F. de Lange, B. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).
[CrossRef]

Dusser, B.

Eichstädt, J.

J. Eichstädt, G. R. B. E. Römer, A. J. H. in’t Veld, “Towards friction control using laser-induced periodic surface structures,” Phys. Procedia. 12, 7–15 (2011).
[CrossRef]

Faure, N.

Frischauf, I.

E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
[CrossRef] [PubMed]

Guo, C.

A. Y. Vorobyev, C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

Haugen, H. K.

A. Borowiec, M. Couillard, G. A. Botton, H. K. Haugen, “Sub-surface damage in indium phosphide caused by micromachining of grooves with femtosecond and nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79, 1887–1890 (2004).

Heitz, J.

E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
[CrossRef] [PubMed]

Hering, S.

E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
[CrossRef] [PubMed]

Hinterdorfer, P.

E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
[CrossRef] [PubMed]

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[CrossRef]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Huis in ’t Veld, A. J.

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: FDTD-feedback simulations,” J. Appl. Phys. 115, 103102 (2014).
[CrossRef]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[CrossRef]

Huis in ’t Veld, B.

D. Scorticati, G.-W. Römer, D. F. de Lange, B. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).
[CrossRef]

in’t Veld, A. J. H.

J. Eichstädt, G. R. B. E. Römer, A. J. H. in’t Veld, “Towards friction control using laser-induced periodic surface structures,” Phys. Procedia. 12, 7–15 (2011).
[CrossRef]

Jourlin, M.

Kautek, W.

G. Daminelli, J. Krüger, W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[CrossRef]

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[CrossRef]

J. Bonse, J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[CrossRef]

J. Bonse, A. Rosenfeld, J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

G. Daminelli, J. Krüger, W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[CrossRef]

Obona, J. V.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[CrossRef]

Ocelik, V.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[CrossRef]

Olbrich, M.

E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
[CrossRef] [PubMed]

Peterbauer, T.

E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
[CrossRef] [PubMed]

Preiner, J.

E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
[CrossRef] [PubMed]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Rebollar, E.

E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
[CrossRef] [PubMed]

Reif, J.

J. Reif, O. Varlamova, F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[CrossRef]

Romanin, C.

E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
[CrossRef] [PubMed]

Römer, G. R. B. E.

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: FDTD-feedback simulations,” J. Appl. Phys. 115, 103102 (2014).
[CrossRef]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[CrossRef]

J. Eichstädt, G. R. B. E. Römer, A. J. H. in’t Veld, “Towards friction control using laser-induced periodic surface structures,” Phys. Procedia. 12, 7–15 (2011).
[CrossRef]

Römer, G.-W.

D. Scorticati, G.-W. Römer, D. F. de Lange, B. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).
[CrossRef]

Rosenfeld, A.

J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[CrossRef]

J. Bonse, A. Rosenfeld, J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

Sagan, Z.

Scorticati, D.

D. Scorticati, G.-W. Römer, D. F. de Lange, B. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).
[CrossRef]

Sipe, J. E.

H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced coherent modulation of solid and liquid surfaces,” JOL 30, 446–471 (1985).

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Skolski, J. Z. P.

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: FDTD-feedback simulations,” J. Appl. Phys. 115, 103102 (2014).
[CrossRef]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[CrossRef]

Soder, H.

van Driel, H. M.

H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced coherent modulation of solid and liquid surfaces,” JOL 30, 446–471 (1985).

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Varlamova, O.

J. Reif, O. Varlamova, F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[CrossRef]

Vincenc Obona, J.

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: FDTD-feedback simulations,” J. Appl. Phys. 115, 103102 (2014).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev, C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Young, J. F.

H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced coherent modulation of solid and liquid surfaces,” JOL 30, 446–471 (1985).

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Y. Vorobyev, C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

J. Reif, O. Varlamova, F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[CrossRef]

A. Borowiec, M. Couillard, G. A. Botton, H. K. Haugen, “Sub-surface damage in indium phosphide caused by micromachining of grooves with femtosecond and nanosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79, 1887–1890 (2004).

Biomaterials (1)

E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (4)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

J. Bonse, J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[CrossRef]

J. Bonse, A. Rosenfeld, J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: FDTD-feedback simulations,” J. Appl. Phys. 115, 103102 (2014).
[CrossRef]

J. Laser Appl. (1)

J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[CrossRef]

J. Nanophotonics (1)

D. Scorticati, G.-W. Römer, D. F. de Lange, B. Huis in ’t Veld, “Ultra-short-pulsed laser-machined nanogratings of laser-induced periodic surface structures on thin molybdenum layers,” J. Nanophotonics 6(1), 063528 (2012).
[CrossRef]

JOL (1)

H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced coherent modulation of solid and liquid surfaces,” JOL 30, 446–471 (1985).

Opt. Express (1)

Phys. Procedia. (1)

J. Eichstädt, G. R. B. E. Römer, A. J. H. in’t Veld, “Towards friction control using laser-induced periodic surface structures,” Phys. Procedia. 12, 7–15 (2011).
[CrossRef]

Phys. Rev. B (2)

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85(7), 075320 (2012).
[CrossRef]

Thin Solid Films (1)

G. Daminelli, J. Krüger, W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[CrossRef]

Other (1)

L. V. Zhigilei, http://www.faculty.virginia.edu/CompMat/Resources.html .

Supplementary Material (1)

» Media 1: MP4 (324 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of PAP experimental approach: (left) a laser pulse with a spatial, as well as temporal, Gaussian profile irradiates the Si wafer, which is glued to an aluminum support, which in turn, is positioned against 3 alignment pins. (right) After every irradiation step, the surface of the sample was inspected by CLSM. A set of alignment marks were machined on the Si surface prior to the PAP experiments, in a checkerboard pattern. The inset shows a CLSM intensity image at 150 × magnification, after the first pulse. This area of about 90 × 70 µm2 was used for alignment of all CLSM images in this paper.

Fig. 2
Fig. 2

CLSM intensity images of the silicon surface after a sequence (i.e. number N of) laser pulses applied to the same position on the sample. The number of pulses is indicated in the upper left of each image. The arrows in the image corresponding to N = 0 (no laser pulses, initial surface) and N = 1 intensity images helped to track a change in the number of particles and their positions before and after the first pulse. The double-headed arrow in the N = 2 image indicates the polarization direction of the laser radiation (Media 1).

Fig. 3
Fig. 3

CLSM height images of the first four pulses, as well as the height profiles to the right of each image, measured at the indicated line across the surface modification. The indicated lines after the 2nd, 3rd and 4th pulse have the same length and exactly the same position. This allows comparison of the height profile of LSFLs, as well as the lateral positions (short dashed lines) of LSFLs. The small double-headed arrows indicate the peak-to-valley distance of the profile. The two single-headed arrows placed on the profile indicate specific ridges of the LSFLs and aid to trace their growth. The inset in the N = 3 image depicts the way the height of these two LSFLs was measured. The evolution of the height (h in N = 3 image) is as follows (lower arrow, upper arrow): 17 nm and 16 nm for N = 2, 67 and 49 nm for N = 3, 191 nm and 180 nm for N = 4.

Fig. 4
Fig. 4

Measured volumes, based on CLSM height images. (left) The volumes were measured in modified area (dashed-dot line). Below this image, in the schematic representation of the cross-section of LSFLs, the volume below the surface level (VBSL) and the volume above the surface level (VASL) are defined. (right) The volume VBSL, VASL as well as, their difference ΔV, as function of the number of pulses applied. ΔV represents the volume of material removed from the laser-material interaction zone due to laser irradiation.

Fig. 5
Fig. 5

Spatial periodicity Λ of the LSFLs (open triangles), as well as the normalized periodicity Λ/λ (solid squares), as function of the number of pulses. λ = 800nm is the wavelength of the laser radiation. The dashed lines (not a linear fit) provide a guide to the eye in order to discern a decrease of periodicity with increasing number of pulses N.

Metrics