Abstract

This work demonstrates the feasibility of a novel photosensitive and all-optically fast-controllable photonic bandgap (PBG) device based on a dye-doped blue phase (DDBP), embedded with a low-concentration azobenzene liquid crystal (azo-LC). PBG of the DDBP can be reversibly fast-tuned off and on with the successive illumination of a weak UV and green beams. UV irradiation can transform the trans azo-LCs into bend cis isomers, which can easily disturb LCs at the boundary between the double twisting cylinders (DTCs) and the disclinations, and, then, quickly destabilize BPI to become a BPIII-like texture with randomly-oriented DTCs. Doing so may quickly destroy the BP PBG structure. However, with the successive illumination of a green beam, the BPI PBG device can be fast-turned on, owing to the fast disappearance of the disturbance of the azo-LCs on the boundary LCs via the green-beam-induced cistrans back isomerization. The response time and irradiated energy density for turning off (on) the BP PBG device under the UV (green) beam irradiation are only 120 ms (120 ms) and 0.764 mJ/cm2 (2.12 mJ/cm2), respectively, which are a thousand-fold reduction in photoswitching a traditional cholesteric LC (CLC) PBG device based on similar experimental conditions (i.e., materials used, azo-LC concentration (1 wt%), spectral position of PBG peak, sample thickness, and temperature difference for a working temperature lower than the clearing one). The BP PBG device can significantly contribute to efforts to develop a photosensitive and all-optically fast-controlling LC laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008), Chap. 1.
  2. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 mum wavelengths,” Opt. Lett. 26(5), 286–288 (2001).
    [CrossRef] [PubMed]
  3. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12(8), 1575–1582 (2004).
    [CrossRef] [PubMed]
  4. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32(5), 530–532 (2007).
    [CrossRef] [PubMed]
  5. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19(12), 1970–1975 (2001).
    [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  7. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
    [CrossRef]
  8. K. Lee, S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000).
    [CrossRef]
  9. D. M. Beggs, T. P. White, L. O’Faolain, T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
    [CrossRef] [PubMed]
  10. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor and Francis, 2005), Chap. B.VIII.
  11. P. P. Crooker, Chirality in Liquid Crystals (Springer-Verlag, 2001), Chap. 7.
  12. H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bond. 128, 99–117 (2008).
    [CrossRef]
  13. P. Etchegoin, “Blue phases of cholesteric liquid crystals as thermotropic photonic crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(1), 1435–1437 (2000).
    [CrossRef] [PubMed]
  14. S.-Y. Lu, L.-C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35(4), 562–564 (2010).
    [CrossRef] [PubMed]
  15. H. J. Coles, M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
    [CrossRef] [PubMed]
  16. A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, “Trans-cis isomerization and the blue phases,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(5), 051705 (2005).
    [CrossRef] [PubMed]
  17. H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, J.-H. Liu, “Optically tuneable blue phase photonic band gaps,” Appl. Phys. Lett. 96(12), 121103 (2010).
    [CrossRef]
  18. W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
    [CrossRef] [PubMed]
  19. S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. 18(1), 48–51 (2006).
    [CrossRef]
  20. H. Coles, S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [CrossRef]
  21. T. Isomura, H. Yoshida, A. Fujii, M. Ozaki, “Laser emission from a photopolymerized cholesteric blue phase II,” Mol. Cryst. Liq. Cryst. 516(1), 197–201 (2010).
    [CrossRef]
  22. A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
    [CrossRef]
  23. S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M.-H. Song, S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
    [CrossRef] [PubMed]
  24. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. 19(20), 3244–3247 (2007).
    [CrossRef]
  25. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
    [CrossRef] [PubMed]
  26. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
    [CrossRef]
  27. T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Polymer stabilization of phototunable cholesteric liquid crystals,” Soft Matter 5(19), 3623–3628 (2009).
    [CrossRef]
  28. T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
    [CrossRef]
  29. P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13(7), 2358–2363 (2005).
    [CrossRef] [PubMed]
  30. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
    [CrossRef]
  31. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
  32. H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
    [CrossRef]
  33. M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
    [CrossRef]
  34. C.-R. Lee, J.-D. Lin, Y.-J. Huang, S.-C. Huang, S.-H. Lin, C.-P. Yu, “All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber,” Opt. Express 19(10), 9676–9689 (2011).
    [CrossRef] [PubMed]
  35. C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
    [CrossRef] [PubMed]
  36. H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
    [CrossRef]
  37. J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [CrossRef]

2013 (1)

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M.-H. Song, S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[CrossRef] [PubMed]

2012 (3)

M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
[CrossRef]

H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
[CrossRef]

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[CrossRef]

2011 (1)

2010 (6)

2009 (2)

T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Polymer stabilization of phototunable cholesteric liquid crystals,” Soft Matter 5(19), 3623–3628 (2009).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

2008 (2)

2007 (4)

V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32(5), 530–532 (2007).
[CrossRef] [PubMed]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. 19(20), 3244–3247 (2007).
[CrossRef]

2006 (2)

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. 18(1), 48–51 (2006).
[CrossRef]

2005 (3)

H. J. Coles, M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, “Trans-cis isomerization and the blue phases,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(5), 051705 (2005).
[CrossRef] [PubMed]

P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13(7), 2358–2363 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (1)

W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[CrossRef] [PubMed]

2001 (2)

2000 (2)

P. Etchegoin, “Blue phases of cholesteric liquid crystals as thermotropic photonic crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(1), 1435–1437 (2000).
[CrossRef] [PubMed]

K. Lee, S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

1998 (2)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Aizawa, M.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Araoka, F.

H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
[CrossRef]

Asher, S. A.

K. Lee, S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000).
[CrossRef]

Barberi, R.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[CrossRef]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Bartolino, R.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Beggs, D. M.

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Bobrovsky, A.

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Bricker, R. L.

T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Polymer stabilization of phototunable cholesteric liquid crystals,” Soft Matter 5(19), 3623–3628 (2009).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

Bunning, T. J.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Polymer stabilization of phototunable cholesteric liquid crystals,” Soft Matter 5(19), 3623–3628 (2009).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. 19(20), 3244–3247 (2007).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Cao, W.

W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[CrossRef] [PubMed]

Chang, W.-T.

M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
[CrossRef]

Chanishvili, A.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, “Trans-cis isomerization and the blue phases,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(5), 051705 (2005).
[CrossRef] [PubMed]

Chen, C.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).

Chen, C.-W.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).

Chen, Y.-J.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).

Cheng, M.-C.

M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
[CrossRef]

Chiappetta, D.

Chien, L.-C.

Chilaya, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, “Trans-cis isomerization and the blue phases,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(5), 051705 (2005).
[CrossRef] [PubMed]

Choi, S.-W.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M.-H. Song, S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[CrossRef] [PubMed]

H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
[CrossRef]

Chow, E.

Chu, C.-C.

M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
[CrossRef]

Cipparrone, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Coles, H.

H. Coles, S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[CrossRef]

Coles, H. J.

H. J. Coles, M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Collings, P. J.

A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, “Trans-cis isomerization and the blue phases,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(5), 051705 (2005).
[CrossRef] [PubMed]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

De Santo, M. P.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[CrossRef]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Dunbar, L. A.

Etchegoin, P.

P. Etchegoin, “Blue phases of cholesteric liquid crystals as thermotropic photonic crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(1), 1435–1437 (2000).
[CrossRef] [PubMed]

Fan, S.

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Fuh, A. Y.-G.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).

Fujii, A.

T. Isomura, H. Yoshida, A. Fujii, M. Ozaki, “Laser emission from a photopolymerized cholesteric blue phase II,” Mol. Cryst. Liq. Cryst. 516(1), 197–201 (2010).
[CrossRef]

Fujisawa, T.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Genack, A.

Gim, M.-J.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M.-H. Song, S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[CrossRef] [PubMed]

H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
[CrossRef]

Green, L.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Houdré, R.

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. 19(20), 3244–3247 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

Hsiao, V. K. S.

M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
[CrossRef]

Hsu, C.-Y.

H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, J.-H. Liu, “Optically tuneable blue phase photonic band gaps,” Appl. Phys. Lett. 96(12), 121103 (2010).
[CrossRef]

Huang, B.-Y.

Huang, S.-C.

Huang, S.-Y.

Huang, Y.-J.

Hur, S.-T.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M.-H. Song, S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[CrossRef] [PubMed]

H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
[CrossRef]

Ikeda, T.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Ishikawa, K.

H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
[CrossRef]

Isomura, T.

T. Isomura, H. Yoshida, A. Fujii, M. Ozaki, “Laser emission from a photopolymerized cholesteric blue phase II,” Mol. Cryst. Liq. Cryst. 516(1), 197–201 (2010).
[CrossRef]

Jau, H.-C.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).

Jeong, H.-C.

H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kanazawa, A.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Kikuchi, H.

H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bond. 128, 99–117 (2008).
[CrossRef]

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. 18(1), 48–51 (2006).
[CrossRef]

Kilic, O.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, S.

Koshiba, M.

Kotlyar, M. V.

Krauss, T. F.

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Law, W.-C.

M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
[CrossRef]

Le, K. V.

H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
[CrossRef]

Le Thomas, N.

Lee, B.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Lee, B. R.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M.-H. Song, S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[CrossRef] [PubMed]

Lee, C.-R.

Lee, H.-K.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Lee, K.

K. Lee, S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Li, Q.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

Lin, J.-D.

Lin, S. Y.

E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 mum wavelengths,” Opt. Lett. 26(5), 286–288 (2001).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Lin, S.-H.

Lin, T.-H.

H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, J.-H. Liu, “Optically tuneable blue phase photonic band gaps,” Appl. Phys. Lett. 96(12), 121103 (2010).
[CrossRef]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).

Liu, H.-Y.

H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, J.-H. Liu, “Optically tuneable blue phase photonic band gaps,” Appl. Phys. Lett. 96(12), 121103 (2010).
[CrossRef]

Liu, J.-H.

H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, J.-H. Liu, “Optically tuneable blue phase photonic band gaps,” Appl. Phys. Lett. 96(12), 121103 (2010).
[CrossRef]

Lousse, V.

Lu, S.-Y.

Mashiko, S.

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. 18(1), 48–51 (2006).
[CrossRef]

Matranga, M. A.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[CrossRef]

Mazzulla, A.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[CrossRef]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

Milner, V.

Mo, T.-S.

Morris, S.

H. Coles, S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[CrossRef]

Muñoz, A.

W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[CrossRef] [PubMed]

Nagamura, T.

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. 18(1), 48–51 (2006).
[CrossRef]

Natarajan, L. V.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Polymer stabilization of phototunable cholesteric liquid crystals,” Soft Matter 5(19), 3623–3628 (2009).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

O’Faolain, L.

Ozaki, M.

T. Isomura, H. Yoshida, A. Fujii, M. Ozaki, “Laser emission from a photopolymerized cholesteric blue phase II,” Mol. Cryst. Liq. Cryst. 516(1), 197–201 (2010).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Palffy-Muhoray, P.

W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[CrossRef] [PubMed]

Park, K.-W.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M.-H. Song, S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[CrossRef] [PubMed]

Petriashvili, G.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[CrossRef]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, “Trans-cis isomerization and the blue phases,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(5), 051705 (2005).
[CrossRef] [PubMed]

Pivnenko, M. N.

H. J. Coles, M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Prasad, P. N.

M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
[CrossRef]

Sanford, R. L.

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Polymer stabilization of phototunable cholesteric liquid crystals,” Soft Matter 5(19), 3623–3628 (2009).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. 19(20), 3244–3247 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

Shibaev, P. V.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13(7), 2358–2363 (2005).
[CrossRef] [PubMed]

Shiono, T.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Solgaard, O.

Song, M.-H.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M.-H. Song, S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[CrossRef] [PubMed]

Su, Y.-C.

M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
[CrossRef]

Suh, W.

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Polymer stabilization of phototunable cholesteric liquid crystals,” Soft Matter 5(19), 3623–3628 (2009).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. 19(20), 3244–3247 (2007).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

Taheri, B.

W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[CrossRef] [PubMed]

Takezoe, H.

H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
[CrossRef]

Uchida, K.

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. 18(1), 48–51 (2006).
[CrossRef]

Wang, C.-T.

H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, J.-H. Liu, “Optically tuneable blue phase photonic band gaps,” Appl. Phys. Lett. 96(12), 121103 (2010).
[CrossRef]

Wei, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).

Wendt, J. R.

White, T. J.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Polymer stabilization of phototunable cholesteric liquid crystals,” Soft Matter 5(19), 3623–3628 (2009).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

White, T. P.

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Yokoyama, S.

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. 18(1), 48–51 (2006).
[CrossRef]

Yong, K.-T.

M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
[CrossRef]

Yoshida, H.

T. Isomura, H. Yoshida, A. Fujii, M. Ozaki, “Laser emission from a photopolymerized cholesteric blue phase II,” Mol. Cryst. Liq. Cryst. 516(1), 197–201 (2010).
[CrossRef]

Yu, C.-P.

Zabelin, V.

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Adv. Funct. Mater. (2)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystals with 2000 nm range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

Adv. Mater. (4)

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, P. V. Shibaev, “Reversible tuning of lasing in cholesteric liquid crystals controlled by light-emitting diodes,” Adv. Mater. 19(4), 565–568 (2007).
[CrossRef]

S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, T. Nagamura, “Laser emission from a polymer-stabilized liquid-crystalline blue phase,” Adv. Mater. 18(1), 48–51 (2006).
[CrossRef]

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M.-H. Song, S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. 19(20), 3244–3247 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, J.-H. Liu, “Optically tuneable blue phase photonic band gaps,” Appl. Phys. Lett. 96(12), 121103 (2010).
[CrossRef]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).

Chem. Mater. (1)

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

IEEE Photonics J. (1)

M.-C. Cheng, C.-C. Chu, Y.-C. Su, W.-T. Chang, V. K. S. Hsiao, K.-T. Yong, W.-C. Law, P. N. Prasad, “Light-induced photoluminescence switching using liquid crystal-dispersed quantum dots,” IEEE Photonics J. 4(1), 19–25 (2012).
[CrossRef]

J. Am. Chem. Soc. (1)

K. Lee, S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

H.-C. Jeong, K. V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, “Transition between widened blue phases by light irradiation using photo-active bent-core liquid crystal with chiral dopant,” J. Mater. Chem. 22, 4627–4630 (2012).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

T. Isomura, H. Yoshida, A. Fujii, M. Ozaki, “Laser emission from a photopolymerized cholesteric blue phase II,” Mol. Cryst. Liq. Cryst. 516(1), 197–201 (2010).
[CrossRef]

Nat. Mater. (1)

W. Cao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[CrossRef] [PubMed]

Nat. Photonics (1)

H. Coles, S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[CrossRef]

Nature (2)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

H. J. Coles, M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. E Stat. Nonlinear Soft Matter Phys. (1)

A. Chanishvili, G. Chilaya, G. Petriashvili, P. J. Collings, “Trans-cis isomerization and the blue phases,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(5), 051705 (2005).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

P. Etchegoin, “Blue phases of cholesteric liquid crystals as thermotropic photonic crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(1), 1435–1437 (2000).
[CrossRef] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Soft Matter (2)

T. J. White, R. L. Bricker, L. V. Natarajan, S. V. Serak, N. V. Tabiryan, T. J. Bunning, “Polymer stabilization of phototunable cholesteric liquid crystals,” Soft Matter 5(19), 3623–3628 (2009).
[CrossRef]

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[CrossRef]

Struct. Bond. (1)

H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bond. 128, 99–117 (2008).
[CrossRef]

Other (3)

P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor and Francis, 2005), Chap. B.VIII.

P. P. Crooker, Chirality in Liquid Crystals (Springer-Verlag, 2001), Chap. 7.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Recorded images of DDBP in imperfect planar CLC phase at T = 25 C, in isotropic phase at T ≥ 52 C, and in BPI at T = 49 C ~42 C in cooling process under the T- and R-type POM with crossed polarizers. At T < 41 C, the focal conic texture appears to replace the BPI. The working temperature of the cell is fixed at 46 °C for performing the all-optical controlling experiments of PBG and lasing emission of the DDBP. The length for the white bar is 200 μm.

Fig. 2
Fig. 2

Measured Kossel diagram of the BPI at 46 °C in the present experiment. The pattern is induced by the diffraction of an incident blue light beam with a central wavelength of 456 nm from the sets of crystal planes of (110) in the BPI crystal structure.

Fig. 3
Fig. 3

(a) Measured reflection spectra of the DDBP and corresponding recorded BP images in the dark, after the irradiation of the UV beam with 0.764 mJ/cm2 for 120 ms (IUV = 6.37 mW/cm2), and after the irradiation of the green beam with 2.12 mJ/cm2 for 120 ms (IG = 17.67 mW/cm2), following the UV irradiation (black, red, and green curves, respectively). The blue and purple curves represent the measured reflection spectra after the second and third cycles of successive irradiation of UV-green-beams on the DDBP. (b) Variations of the PBG reflection peak intensity of the DDBP with the illumination times of the UV and green beams (black and red dots, respectively). The DDBP is irradiated by the UV light with 6.37 mW/cm2 and then by the green light with 17.67 mW/cm2, following the UV irradiation.

Fig. 4
Fig. 4

(a) Mechanisms for all-optical fast-controllability of the DDBP crystal structure (BPI) under the successive irradiation of the UV and green beams. The gray cylinders and black lines are the double-twisted cylinders and disclination lines of the BPI, respectively. The violet rod-like molecules are the LCs, and the orange rod-like and curve molecules are the trans and cis azo-LCs, respectively. (b) The topmost photograph is the DDBP image observed under the POM with crossed polarizers after the UV irradiation. The middle and bottommost POM images of DDPB are observed when the transmission axis of the analyzer is slightly rotated with an identical angle (10°) counterclockwise and clockwise, respectively. The scale bar is 100 μm.

Fig. 5
Fig. 5

Variations of the reflection spectrum of the DDCLC with increasing tUV from 0 s to 210 s and 90 s, respectively, at conditions of (a) DUV = 0~1274 mJ/cm2 and T = 46 °C and (b) DUV = 0 ~573.5 mJ/cm2 and T = 55 °C.

Fig. 6
Fig. 6

Measured absorption and fluorescence emission spectra (red and blue curves, respectively) of 0.5wt% P567-doped NLC cell.

Fig. 7
Fig. 7

Variations in (a) the measured fluorescence emission spectrum of the DDBP cell and (b) its corresponding peak intensity and FWHM with the pumped energy as the cell is in the dark (before the UV irradiation).

Fig. 8
Fig. 8

Measured spectra of the left- and right-circularly polarized (LCP and RCP, respectively) fluorescence emission of the DDBP at E = 12.3 μJ/pulse if a left- and right-circular polarizer are placed in front of the recorded spectrometer, respectively.

Fig. 9
Fig. 9

Variations in the measured (a) fluorescence emission spectrum of the DDBP cell and (b) its corresponding peak intensity and FWHM with the pumped energy after the irradiation of the UV beam with 0.764 mJ/cm2 for 120 ms.

Fig. 10
Fig. 10

Variations in the measured (a) fluorescence emission spectrum of the DDBP cell and (b) its corresponding peak intensity and FWHM with the pumped energy after the irradiation of the green beam with the intensity of 2.12 mJ/cm2 for 120 ms following the UV irradiation.

Tables (1)

Tables Icon

Table 1 Summarization for the experimental conditions of DDBP and DDCLC cells. λc: central wavelength of the reflection band; Tc: clearing temperature; T: working temperature; tUV and DUV: exposure time and energy density of UV-irradiation, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ= 2na h 2 + k 2 + l 2 ,

Metrics