Abstract

Metal-semiconductor-metal Si waveguide photodetectors are demonstrated with responsivities of greater than 0.5 A/W at a wavelength of 1550 nm for a device length of 1mm. Sub-bandgap absorption in the Si waveguide is achieved by creating divacancy lattice defects via Si+ ion implantation. The modal absorption coefficient of the ion-implanted Si waveguide is measured to be ≈185 dB/cm, resulting in a detector responsivity of ≈0.51 A/W at a 50V bias. The frequency response of a typical 1mm-length detector is measured to be 2.6 GHz, with simulations showing that a frequency response of 9.8 GHz is achievable with an optimized contact configuration and bias voltage of 15V. Due to the ease with which these devices can be fabricated, and their potential for high performance, these detectors are suitable for various applications in Si-based photonic integrated circuits.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express 17(7), 5193–5204 (2009).
    [CrossRef] [PubMed]
  2. R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, R. M. Osgood., “10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55µm,” IEEE Photon. Technol. Lett. 25(1), 67–70 (2013).
    [CrossRef]
  3. B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error-Free Operation of an All-Silicon Waveguide Photodiode at 1.9µm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013).
    [CrossRef]
  4. J. K. Doylend, P. E. Jessop, A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
    [CrossRef] [PubMed]
  5. B. Souhan, R. R. Grote, J. B. Driscoll, R. M. Osgood, Jr., “Ion-Implanted Silicon-Waveguide Avalanche Photodiode with Separate Absorption Multiplication Region for C-Band Operation,” presented at Frontiers in Optics, Rochester NY, 14 Oct. 2012.
  6. J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013).
    [CrossRef] [PubMed]
  7. A. P. Knights, J. D. Bradley, S. H. Ghou, P. E. Jessop, “Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
    [CrossRef]
  8. M. W. Geis, S. J. Spector, M. E. Grein, R. J. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Käertner, T. M. Lyszczarz, “All silicon infrared photodiodes: photo response and effects of processing temperature,” Opt. Express 15(25), 16886–16895 (2007).
    [CrossRef] [PubMed]
  9. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
    [CrossRef]
  10. D. F. Logan, A. P. Knights, P. E. Jessop, N. G. Tarr, “Defect-enhanced photo-detection at 1550 nm in a silicon waveguide formed via LOCOS,” Semicond. Sci. Technol. 26(4), 045009 (2011).
    [CrossRef]
  11. J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
    [CrossRef]
  12. R. Dey, J. Doylend, J. Ackert, A. Evans, P. Jessop, A. Knights, “Demonstration of a wavelength monitor comprised of racetrack-ring resonators with defect mediated photodiodes operating in the C-band,” Opt. Express 21(20), 23450–23458 (2013).
    [CrossRef] [PubMed]
  13. K. Padmaraju, J. Chan, L. Chen, M. Lipson, K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
    [CrossRef] [PubMed]
  14. S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Nishi, H. Shinojima, S. Itabashi, “All-silicon and in-line integration of variable optical attenuators and photodetectors based on submicrometer rib waveguides,” Opt. Express 18(15), 15303–15310 (2010).
    [CrossRef] [PubMed]
  15. L. D. Haret, X. Checoury, F. Bayle, N. Cazier, P. Boucaud, S. Combrié, A. de Rossi, “Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities,” Opt. Express 21(8), 10324–10334 (2013).
    [CrossRef] [PubMed]
  16. S. M. Sze and K. K. NG, Physics of Semiconductor Devices 3rd Edition (John Wiley & Sons, 2007), Chap. 13.
  17. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010).
    [CrossRef] [PubMed]
  18. K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, T. Suzuki, N. Suzuki, and M. Ezaki, “High responsivity and low dark current operation of ultra-small InGaAs MSM photodetector integrated on Si waveguide,” in Group IV Photonics, 2010 7th IEEE International Conference on, (Beijing, China, 2010), pp. 323–325.
    [CrossRef]
  19. M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, I. Rendina, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal photodetector based on internal photoemissions at 1550nm,” J. Appl. Phys. 114(15), 153103 (2013).
    [CrossRef]
  20. J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
    [CrossRef] [PubMed]
  21. R. A. Soref, B. R. Bennett, “Electrooptical Effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  22. A. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  23. Oz Optics, Limited, www.ozoptics.com
  24. Synopsys Optical Solutions, optics.synopsys.com .
  25. Soitec, www.soitec.com .
  26. J. K. W. Yang, K. K. Berggren, “Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography,” J. Vac. Sci. Technol. B 25(6), 2025 (2007).
    [CrossRef]
  27. J. F. Ziegler, M. D. Ziegler, J. P. Biersack, “SRIM – The Stopping and Range of Ions in Matter (2010),” Nucl. Instrum. Methods 268(11-12), 1818–1823 (2010).
    [CrossRef]
  28. S. Abbaszadeh, N. Allec, K. Wang, F. Chen, K. S. Karim, “Study of gain phenomenon in lateral metal-semiconductor-metal detectors for indirect conversion medical imaging,” in Proceedings of SPIE, Medical Imaging 2011: Physics of Medical Imaging, (Lake Buena Vista, FL, 2011), (2011).
  29. T. C. Tisone, J. Drobek, “Diffusion in thin film Ti-Au, Ti-Pd, and Ti-Pt couples,” J. Vac. Sci. Technol. 9(1), 271–275 (1972).
    [CrossRef]
  30. B. Souhan, R. Grote, J. Driscoll, H. Bakhru, and R. M. Osgood, “CMOS Compatible Argon-Ion-Implanted C-Band Silicon waveguide Photodetector,” in Conference on Lasers and Electro-Optics, Technical Digest (online) (Optical Society of America, 2013), paper CTh3L.3.
    [CrossRef]
  31. H. Y. Fan, A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127–1134 (1959).
    [CrossRef]
  32. T. Maekawa, S. Inoue, M. Aiura, A. Usami, “The effect of radiation damage on carrier mobility in neutron-transmutation-doped silicon,” Semicond. Sci. Technol. 3(2), 77–83 (1988).
    [CrossRef]
  33. K. Gill, G. Hall, B. MacEvoy, “Bulk damage effects in irradiated silicon detectors due to clustered divacancies,” J. Appl. Phys. 82(1), 126–136 (1997).
    [CrossRef]
  34. S. M. Sze, J. C. Irvin, “Resistivity, mobility, and impurity levels in GaAs, Ge, and Si at 300K,” Solid-State Electron. 11(6), 599–602 (1968).
    [CrossRef]

2013 (6)

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, R. M. Osgood., “10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55µm,” IEEE Photon. Technol. Lett. 25(1), 67–70 (2013).
[CrossRef]

B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error-Free Operation of an All-Silicon Waveguide Photodiode at 1.9µm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, I. Rendina, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal photodetector based on internal photoemissions at 1550nm,” J. Appl. Phys. 114(15), 153103 (2013).
[CrossRef]

L. D. Haret, X. Checoury, F. Bayle, N. Cazier, P. Boucaud, S. Combrié, A. de Rossi, “Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities,” Opt. Express 21(8), 10324–10334 (2013).
[CrossRef] [PubMed]

J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013).
[CrossRef] [PubMed]

R. Dey, J. Doylend, J. Ackert, A. Evans, P. Jessop, A. Knights, “Demonstration of a wavelength monitor comprised of racetrack-ring resonators with defect mediated photodiodes operating in the C-band,” Opt. Express 21(20), 23450–23458 (2013).
[CrossRef] [PubMed]

2012 (2)

2011 (1)

D. F. Logan, A. P. Knights, P. E. Jessop, N. G. Tarr, “Defect-enhanced photo-detection at 1550 nm in a silicon waveguide formed via LOCOS,” Semicond. Sci. Technol. 26(4), 045009 (2011).
[CrossRef]

2010 (4)

2009 (1)

2007 (3)

M. W. Geis, S. J. Spector, M. E. Grein, R. J. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Käertner, T. M. Lyszczarz, “All silicon infrared photodiodes: photo response and effects of processing temperature,” Opt. Express 15(25), 16886–16895 (2007).
[CrossRef] [PubMed]

J. K. W. Yang, K. K. Berggren, “Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography,” J. Vac. Sci. Technol. B 25(6), 2025 (2007).
[CrossRef]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

2006 (1)

A. P. Knights, J. D. Bradley, S. H. Ghou, P. E. Jessop, “Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

2005 (1)

J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

1998 (1)

1997 (1)

K. Gill, G. Hall, B. MacEvoy, “Bulk damage effects in irradiated silicon detectors due to clustered divacancies,” J. Appl. Phys. 82(1), 126–136 (1997).
[CrossRef]

1988 (1)

T. Maekawa, S. Inoue, M. Aiura, A. Usami, “The effect of radiation damage on carrier mobility in neutron-transmutation-doped silicon,” Semicond. Sci. Technol. 3(2), 77–83 (1988).
[CrossRef]

1987 (1)

R. A. Soref, B. R. Bennett, “Electrooptical Effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

1972 (1)

T. C. Tisone, J. Drobek, “Diffusion in thin film Ti-Au, Ti-Pd, and Ti-Pt couples,” J. Vac. Sci. Technol. 9(1), 271–275 (1972).
[CrossRef]

1968 (1)

S. M. Sze, J. C. Irvin, “Resistivity, mobility, and impurity levels in GaAs, Ge, and Si at 300K,” Solid-State Electron. 11(6), 599–602 (1968).
[CrossRef]

1959 (1)

H. Y. Fan, A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127–1134 (1959).
[CrossRef]

Abbaszadeh, S.

S. Abbaszadeh, N. Allec, K. Wang, F. Chen, K. S. Karim, “Study of gain phenomenon in lateral metal-semiconductor-metal detectors for indirect conversion medical imaging,” in Proceedings of SPIE, Medical Imaging 2011: Physics of Medical Imaging, (Lake Buena Vista, FL, 2011), (2011).

Ackert, J.

Ackert, J. J.

Aiura, M.

T. Maekawa, S. Inoue, M. Aiura, A. Usami, “The effect of radiation damage on carrier mobility in neutron-transmutation-doped silicon,” Semicond. Sci. Technol. 3(2), 77–83 (1988).
[CrossRef]

Allec, N.

S. Abbaszadeh, N. Allec, K. Wang, F. Chen, K. S. Karim, “Study of gain phenomenon in lateral metal-semiconductor-metal detectors for indirect conversion medical imaging,” in Proceedings of SPIE, Medical Imaging 2011: Physics of Medical Imaging, (Lake Buena Vista, FL, 2011), (2011).

Assefa, S.

Bayle, F.

Bedell, S. W.

Bennett, B. R.

R. A. Soref, B. R. Bennett, “Electrooptical Effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Berggren, K. K.

J. K. W. Yang, K. K. Berggren, “Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography,” J. Vac. Sci. Technol. B 25(6), 2025 (2007).
[CrossRef]

Bergman, K.

B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error-Free Operation of an All-Silicon Waveguide Photodiode at 1.9µm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013).
[CrossRef]

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, R. M. Osgood., “10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55µm,” IEEE Photon. Technol. Lett. 25(1), 67–70 (2013).
[CrossRef]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
[CrossRef] [PubMed]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
[CrossRef] [PubMed]

Biersack, J. P.

J. F. Ziegler, M. D. Ziegler, J. P. Biersack, “SRIM – The Stopping and Range of Ions in Matter (2010),” Nucl. Instrum. Methods 268(11-12), 1818–1823 (2010).
[CrossRef]

Boucaud, P.

Bradley, J. D.

A. P. Knights, J. D. Bradley, S. H. Ghou, P. E. Jessop, “Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

Bradley, J. D. B.

J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Cartledge, J. C.

Casalino, M.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, I. Rendina, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal photodetector based on internal photoemissions at 1550nm,” J. Appl. Phys. 114(15), 153103 (2013).
[CrossRef]

Cazier, N.

Chan, J.

Checoury, X.

Chen, C. P.

B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error-Free Operation of an All-Silicon Waveguide Photodiode at 1.9µm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013).
[CrossRef]

Chen, F.

S. Abbaszadeh, N. Allec, K. Wang, F. Chen, K. S. Karim, “Study of gain phenomenon in lateral metal-semiconductor-metal detectors for indirect conversion medical imaging,” in Proceedings of SPIE, Medical Imaging 2011: Physics of Medical Imaging, (Lake Buena Vista, FL, 2011), (2011).

Chen, L.

Combrié, S.

Dadap, J. I.

de Rossi, A.

Deneault, S.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Dey, R.

Djurišic, A. B.

Doylend, J.

Doylend, J. K.

Driscoll, J. B.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, R. M. Osgood., “10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55µm,” IEEE Photon. Technol. Lett. 25(1), 67–70 (2013).
[CrossRef]

B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error-Free Operation of an All-Silicon Waveguide Photodiode at 1.9µm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013).
[CrossRef]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
[CrossRef] [PubMed]

Drobek, J.

T. C. Tisone, J. Drobek, “Diffusion in thin film Ti-Au, Ti-Pd, and Ti-Pt couples,” J. Vac. Sci. Technol. 9(1), 271–275 (1972).
[CrossRef]

Elazar, J. M.

Evans, A.

Fan, H. Y.

H. Y. Fan, A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127–1134 (1959).
[CrossRef]

Gan, F.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

M. W. Geis, S. J. Spector, M. E. Grein, R. J. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Käertner, T. M. Lyszczarz, “All silicon infrared photodiodes: photo response and effects of processing temperature,” Opt. Express 15(25), 16886–16895 (2007).
[CrossRef] [PubMed]

Geis, M. W.

Ghou, S. H.

A. P. Knights, J. D. Bradley, S. H. Ghou, P. E. Jessop, “Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

Gill, K.

K. Gill, G. Hall, B. MacEvoy, “Bulk damage effects in irradiated silicon detectors due to clustered divacancies,” J. Appl. Phys. 82(1), 126–136 (1997).
[CrossRef]

Gioffrè, M.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, I. Rendina, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal photodetector based on internal photoemissions at 1550nm,” J. Appl. Phys. 114(15), 153103 (2013).
[CrossRef]

Grein, M. E.

Grote, R. R.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, R. M. Osgood., “10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55µm,” IEEE Photon. Technol. Lett. 25(1), 67–70 (2013).
[CrossRef]

B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error-Free Operation of an All-Silicon Waveguide Photodiode at 1.9µm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013).
[CrossRef]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
[CrossRef] [PubMed]

Hall, G.

K. Gill, G. Hall, B. MacEvoy, “Bulk damage effects in irradiated silicon detectors due to clustered divacancies,” J. Appl. Phys. 82(1), 126–136 (1997).
[CrossRef]

Haret, L. D.

Inoue, S.

T. Maekawa, S. Inoue, M. Aiura, A. Usami, “The effect of radiation damage on carrier mobility in neutron-transmutation-doped silicon,” Semicond. Sci. Technol. 3(2), 77–83 (1988).
[CrossRef]

Irvin, J. C.

S. M. Sze, J. C. Irvin, “Resistivity, mobility, and impurity levels in GaAs, Ge, and Si at 300K,” Solid-State Electron. 11(6), 599–602 (1968).
[CrossRef]

Itabashi, S.

Jessop, P.

Jessop, P. E.

J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013).
[CrossRef] [PubMed]

D. F. Logan, A. P. Knights, P. E. Jessop, N. G. Tarr, “Defect-enhanced photo-detection at 1550 nm in a silicon waveguide formed via LOCOS,” Semicond. Sci. Technol. 26(4), 045009 (2011).
[CrossRef]

J. K. Doylend, P. E. Jessop, A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

A. P. Knights, J. D. Bradley, S. H. Ghou, P. E. Jessop, “Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Kaertner, F. X.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Käertner, F. X.

Karar, A. S.

Karim, K. S.

S. Abbaszadeh, N. Allec, K. Wang, F. Chen, K. S. Karim, “Study of gain phenomenon in lateral metal-semiconductor-metal detectors for indirect conversion medical imaging,” in Proceedings of SPIE, Medical Imaging 2011: Physics of Medical Imaging, (Lake Buena Vista, FL, 2011), (2011).

Knights, A.

Knights, A. P.

J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013).
[CrossRef] [PubMed]

D. F. Logan, A. P. Knights, P. E. Jessop, N. G. Tarr, “Defect-enhanced photo-detection at 1550 nm in a silicon waveguide formed via LOCOS,” Semicond. Sci. Technol. 26(4), 045009 (2011).
[CrossRef]

J. K. Doylend, P. E. Jessop, A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

A. P. Knights, J. D. Bradley, S. H. Ghou, P. E. Jessop, “Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Lennon, D. M.

Lipson, M.

Logan, D. F.

D. F. Logan, A. P. Knights, P. E. Jessop, N. G. Tarr, “Defect-enhanced photo-detection at 1550 nm in a silicon waveguide formed via LOCOS,” Semicond. Sci. Technol. 26(4), 045009 (2011).
[CrossRef]

Lyszczarz, T. M.

MacEvoy, B.

K. Gill, G. Hall, B. MacEvoy, “Bulk damage effects in irradiated silicon detectors due to clustered divacancies,” J. Appl. Phys. 82(1), 126–136 (1997).
[CrossRef]

Maekawa, T.

T. Maekawa, S. Inoue, M. Aiura, A. Usami, “The effect of radiation damage on carrier mobility in neutron-transmutation-doped silicon,” Semicond. Sci. Technol. 3(2), 77–83 (1988).
[CrossRef]

Majewski, M. L.

Moretti, L.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, I. Rendina, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal photodetector based on internal photoemissions at 1550nm,” J. Appl. Phys. 114(15), 153103 (2013).
[CrossRef]

Nishi, H.

Ophir, N.

B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error-Free Operation of an All-Silicon Waveguide Photodiode at 1.9µm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013).
[CrossRef]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
[CrossRef] [PubMed]

Osgood, R. M.

B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error-Free Operation of an All-Silicon Waveguide Photodiode at 1.9µm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013).
[CrossRef]

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, R. M. Osgood., “10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55µm,” IEEE Photon. Technol. Lett. 25(1), 67–70 (2013).
[CrossRef]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
[CrossRef] [PubMed]

Padmaraju, K.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, R. M. Osgood., “10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55µm,” IEEE Photon. Technol. Lett. 25(1), 67–70 (2013).
[CrossRef]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
[CrossRef] [PubMed]

Paez, D. J.

Palmacci, S. T.

Panoiu, N. C.

Park, S.

Rakic, A. D.

Ramdas, A. K.

H. Y. Fan, A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127–1134 (1959).
[CrossRef]

Rendina, I.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, I. Rendina, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal photodetector based on internal photoemissions at 1550nm,” J. Appl. Phys. 114(15), 153103 (2013).
[CrossRef]

Rice, P. M.

Schulein, R. J.

Schulein, R. T.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Shinojima, H.

Sirleto, L.

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, I. Rendina, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal photodetector based on internal photoemissions at 1550nm,” J. Appl. Phys. 114(15), 153103 (2013).
[CrossRef]

Soref, R. A.

R. A. Soref, B. R. Bennett, “Electrooptical Effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Souhan, B.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, R. M. Osgood., “10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55µm,” IEEE Photon. Technol. Lett. 25(1), 67–70 (2013).
[CrossRef]

B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error-Free Operation of an All-Silicon Waveguide Photodiode at 1.9µm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013).
[CrossRef]

Spector, S. J.

Sze, S. M.

S. M. Sze, J. C. Irvin, “Resistivity, mobility, and impurity levels in GaAs, Ge, and Si at 300K,” Solid-State Electron. 11(6), 599–602 (1968).
[CrossRef]

Tarr, N. G.

D. F. Logan, A. P. Knights, P. E. Jessop, N. G. Tarr, “Defect-enhanced photo-detection at 1550 nm in a silicon waveguide formed via LOCOS,” Semicond. Sci. Technol. 26(4), 045009 (2011).
[CrossRef]

Tisone, T. C.

T. C. Tisone, J. Drobek, “Diffusion in thin film Ti-Au, Ti-Pd, and Ti-Pt couples,” J. Vac. Sci. Technol. 9(1), 271–275 (1972).
[CrossRef]

Topuria, T.

Tsuchizawa, T.

Usami, A.

T. Maekawa, S. Inoue, M. Aiura, A. Usami, “The effect of radiation damage on carrier mobility in neutron-transmutation-doped silicon,” Semicond. Sci. Technol. 3(2), 77–83 (1988).
[CrossRef]

Vlasov, Y. A.

Wang, K.

S. Abbaszadeh, N. Allec, K. Wang, F. Chen, K. S. Karim, “Study of gain phenomenon in lateral metal-semiconductor-metal detectors for indirect conversion medical imaging,” in Proceedings of SPIE, Medical Imaging 2011: Physics of Medical Imaging, (Lake Buena Vista, FL, 2011), (2011).

Watanabe, T.

Wynn, C. M.

Xia, F.

Yamada, K.

Yang, J. K. W.

J. K. W. Yang, K. K. Berggren, “Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography,” J. Vac. Sci. Technol. B 25(6), 2025 (2007).
[CrossRef]

Yoon, J. U.

Zhang, Y.

Ziegler, J. F.

J. F. Ziegler, M. D. Ziegler, J. P. Biersack, “SRIM – The Stopping and Range of Ions in Matter (2010),” Nucl. Instrum. Methods 268(11-12), 1818–1823 (2010).
[CrossRef]

Ziegler, M. D.

J. F. Ziegler, M. D. Ziegler, J. P. Biersack, “SRIM – The Stopping and Range of Ions in Matter (2010),” Nucl. Instrum. Methods 268(11-12), 1818–1823 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. D. B. Bradley, P. E. Jessop, A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref, B. R. Bennett, “Electrooptical Effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, R. M. Osgood., “10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55µm,” IEEE Photon. Technol. Lett. 25(1), 67–70 (2013).
[CrossRef]

B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, R. M. Osgood, “Error-Free Operation of an All-Silicon Waveguide Photodiode at 1.9µm,” IEEE Photon. Technol. Lett. 25(21), 2031–2034 (2013).
[CrossRef]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

J. Appl. Phys. (3)

H. Y. Fan, A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30(8), 1127–1134 (1959).
[CrossRef]

K. Gill, G. Hall, B. MacEvoy, “Bulk damage effects in irradiated silicon detectors due to clustered divacancies,” J. Appl. Phys. 82(1), 126–136 (1997).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, I. Rendina, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal photodetector based on internal photoemissions at 1550nm,” J. Appl. Phys. 114(15), 153103 (2013).
[CrossRef]

J. Vac. Sci. Technol. (1)

T. C. Tisone, J. Drobek, “Diffusion in thin film Ti-Au, Ti-Pd, and Ti-Pt couples,” J. Vac. Sci. Technol. 9(1), 271–275 (1972).
[CrossRef]

J. Vac. Sci. Technol. A (1)

A. P. Knights, J. D. Bradley, S. H. Ghou, P. E. Jessop, “Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. K. W. Yang, K. K. Berggren, “Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography,” J. Vac. Sci. Technol. B 25(6), 2025 (2007).
[CrossRef]

Nucl. Instrum. Methods (1)

J. F. Ziegler, M. D. Ziegler, J. P. Biersack, “SRIM – The Stopping and Range of Ions in Matter (2010),” Nucl. Instrum. Methods 268(11-12), 1818–1823 (2010).
[CrossRef]

Opt. Express (10)

M. W. Geis, S. J. Spector, M. E. Grein, R. J. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Käertner, T. M. Lyszczarz, “All silicon infrared photodiodes: photo response and effects of processing temperature,” Opt. Express 15(25), 16886–16895 (2007).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express 17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010).
[CrossRef] [PubMed]

J. K. Doylend, P. E. Jessop, A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Nishi, H. Shinojima, S. Itabashi, “All-silicon and in-line integration of variable optical attenuators and photodetectors based on submicrometer rib waveguides,” Opt. Express 18(15), 15303–15310 (2010).
[CrossRef] [PubMed]

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
[CrossRef] [PubMed]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
[CrossRef] [PubMed]

L. D. Haret, X. Checoury, F. Bayle, N. Cazier, P. Boucaud, S. Combrié, A. de Rossi, “Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities,” Opt. Express 21(8), 10324–10334 (2013).
[CrossRef] [PubMed]

J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013).
[CrossRef] [PubMed]

R. Dey, J. Doylend, J. Ackert, A. Evans, P. Jessop, A. Knights, “Demonstration of a wavelength monitor comprised of racetrack-ring resonators with defect mediated photodiodes operating in the C-band,” Opt. Express 21(20), 23450–23458 (2013).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (2)

T. Maekawa, S. Inoue, M. Aiura, A. Usami, “The effect of radiation damage on carrier mobility in neutron-transmutation-doped silicon,” Semicond. Sci. Technol. 3(2), 77–83 (1988).
[CrossRef]

D. F. Logan, A. P. Knights, P. E. Jessop, N. G. Tarr, “Defect-enhanced photo-detection at 1550 nm in a silicon waveguide formed via LOCOS,” Semicond. Sci. Technol. 26(4), 045009 (2011).
[CrossRef]

Solid-State Electron. (1)

S. M. Sze, J. C. Irvin, “Resistivity, mobility, and impurity levels in GaAs, Ge, and Si at 300K,” Solid-State Electron. 11(6), 599–602 (1968).
[CrossRef]

Other (8)

K. Ohira, K. Kobayashi, N. Iizuka, H. Yoshida, T. Suzuki, N. Suzuki, and M. Ezaki, “High responsivity and low dark current operation of ultra-small InGaAs MSM photodetector integrated on Si waveguide,” in Group IV Photonics, 2010 7th IEEE International Conference on, (Beijing, China, 2010), pp. 323–325.
[CrossRef]

S. Abbaszadeh, N. Allec, K. Wang, F. Chen, K. S. Karim, “Study of gain phenomenon in lateral metal-semiconductor-metal detectors for indirect conversion medical imaging,” in Proceedings of SPIE, Medical Imaging 2011: Physics of Medical Imaging, (Lake Buena Vista, FL, 2011), (2011).

B. Souhan, R. Grote, J. Driscoll, H. Bakhru, and R. M. Osgood, “CMOS Compatible Argon-Ion-Implanted C-Band Silicon waveguide Photodetector,” in Conference on Lasers and Electro-Optics, Technical Digest (online) (Optical Society of America, 2013), paper CTh3L.3.
[CrossRef]

B. Souhan, R. R. Grote, J. B. Driscoll, R. M. Osgood, Jr., “Ion-Implanted Silicon-Waveguide Avalanche Photodiode with Separate Absorption Multiplication Region for C-Band Operation,” presented at Frontiers in Optics, Rochester NY, 14 Oct. 2012.

S. M. Sze and K. K. NG, Physics of Semiconductor Devices 3rd Edition (John Wiley & Sons, 2007), Chap. 13.

Oz Optics, Limited, www.ozoptics.com

Synopsys Optical Solutions, optics.synopsys.com .

Soitec, www.soitec.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Device cartoon with lower inset showing the cross-section of a p-i-n device from [4] and upper inset giving the cross-section of our MSM structure. (b) SEM image of 250 µm device.

Fig. 2
Fig. 2

Simulated parasitic loss verses waveguide-contact gap for 750 × 220 nm waveguide with wing heights of 50 nm and 150 nm at λ = 1550 nm. (insets) Mode intensity for the quasi-TE guided mode for both 50 nm (lower) and 150 nm (upper) wing heights. The lower modal confinement of the 150nm-wing height increases the required contact gap for a given amount of parasitic loss. For devices reported here, the waveguide-contact gap is 2.3µm.

Fig. 3
Fig. 3

SEM images of fabricated devices. (a) View of the waveguide sidewalls showing no measurable roughness over the length of 1 µm. (b) Top view of waveguide with wings and contacts; the contact separation is 5.4 µm. (inset) High-magnification view of the waveguide showing waveguide width of 763 nm.

Fig. 4
Fig. 4

(a) Responsivity vs bias voltage with error bars for 1mm long PDs. (inset) Photocurrent for ≈1mW optical power and dark current for typical 1mm long PD. (b) Responsivity verses wavelength from 1550nm to 1610nm for a 30V bias, the dashed line is a second-order polynomial fit to illustrate the trend.

Fig. 5
Fig. 5

(a) Measured modal absorption coefficient verses wavelength from 1530 nm to 1610 nm. The data was smoothed to reduce noise in our measurement setup and thus obtain a general trend. (b) Linearity of device with input optical power at λ = _1550 nm from 0.015 mW to 13 mW, corresponding to power incident on detector 2.2 µW to 2 mW.

Fig. 6
Fig. 6

Frequency response for a 1mm device at 40-50V along with simulation results for a carrier mobility of 50 V/cm2s.

Metrics