Abstract

Using single-stage C-band EDFAs equalized to 41 nm, we transmit 152x200 Gb/s PDM 16QAM channels with 6.0 b/s/Hz spectral efficiency over 9,748 km enabled by Nyquist spectral shaping and digital back propagation. 76x400 Gb/s channels are also transmitted over 8,665 km detecting two 200 Gb/s channels simultaneously using a single wideband receiver. Digital back propagation benefit versus channel pre-emphasis, transmission distance and wavelength are experimentally investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency

J.-X. Cai, H. G. Batshon, H. Zhang, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, O. Sinkin, A. Pilipetskii, G. Mohs, and Neal S. Bergano
Opt. Express 21(2) 1555-1560 (2013)

16QAM transmission with 5.2 bits/s/Hz spectral efficiency over transoceanic distance

H. Zhang, J.-X. Cai, H. G. Batshon, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, A. Pilipetskii, G. Mohs, and Neal S. Bergano
Opt. Express 20(11) 11688-11693 (2012)

1306-km 20x124.8-Gb/s PM-64QAM Transmission over PSCF with Net SEDP 11,300 (b∙km)/s/Hz using 1.15 samp/symb DAC

A. Nespola, S. Straullu, G. Bosco, A. Carena, J. Yanchao, P. Poggiolini, F. Forghieri, Y. Yamamoto, M. Hirano, T. Sasaki, J. Bauwelinck, and K. Verheyen
Opt. Express 22(2) 1796-1805 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cai, “100G transmission over transoceanic distance with high spectral efficiency and large capacity,” J. Lightwave Technol. 30(24), 3845–3856 (2012).
    [Crossref]
  2. H. Zhang, H. G. Batshon, D. G. Foursa, M. V. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Proceedings of OFC/NFOEC (2013), OTu2B.3.
    [Crossref]
  3. M. Salsi, A. Ghazisaeidi, P. Tran, R. Muller, L. Schmalen, J. Renaudier, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “31 Tb/s transmission over 7,200 km using 46 Gbaud PDM-8QAM with optimized error correcting code rate,” in Proceedings of OECC (2013), PDP3-5.
  4. D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013).
    [Crossref] [PubMed]
  5. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE J. Photonics. 1(2), 144–152 (2009).
    [Crossref]
  6. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital back propagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  7. S. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40×117.6 Gb/s PDM-16QAM OFDM transmission over 10,181 km with soft-decision LDPC coding and nonlinearity compensation,” in Proceedings of OFC/NFOEC (2012), PDP5C.4.
  8. H. Zhang, J.-X. Cai, H. G. Batshon, M. V. Mazurczyk, O. Sinkin, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency,” in Proceedings of OFC/NFOEC (2013), PDP5A.6.
  9. M. V. Mazurczyk, “Spectral shaping for high spectral efficiency in long-haul optical transmission systems,” in Proceedings of ECOC (2013), We.4.D.2.
  10. J.-X. Cai, H. Zhang, H. G. Batshon, M. V. Mazurczyk, O. Sinkin, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency,” accepted to J. Lightwave Technol.
  11. P. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
    [Crossref]
  12. O. V. Sinkin, J.-X. Cai, D. G. Foursa, G. Mohs, and A. Pilipetskii, “Impact of broadband four-wave mixing on system characterization,” in Proceedings of OFC/NFOEC (2013), OTh3G.3.
    [Crossref]
  13. J.-X. Cai, O. V. Sinkin, H. Zhang, H. G. Batshon, M. V. Mazurczyk, D. G. Foursa, A. Pilipetskii, and G. Mohs, “Nonlinearity compensation benefit in high capacity ultra-long haul transmission systems,” in Proceedings of ECOC (2013), We.4.D.2.

2013 (1)

2012 (2)

2009 (1)

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE J. Photonics. 1(2), 144–152 (2009).
[Crossref]

2008 (1)

Cai, J.-X.

Djordjevic, I. B.

Huang, M.-F.

Huang, Y.-K.

Ip, E.

Kahn, J. M.

Li, G.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE J. Photonics. 1(2), 144–152 (2009).
[Crossref]

Mateo, E.

Qian, D.

Winzer, P.

Yaman, F.

D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013).
[Crossref] [PubMed]

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE J. Photonics. 1(2), 144–152 (2009).
[Crossref]

Zhang, S.

Zhang, Y.

IEEE J. Photonics. (1)

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE J. Photonics. 1(2), 144–152 (2009).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (8)

S. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40×117.6 Gb/s PDM-16QAM OFDM transmission over 10,181 km with soft-decision LDPC coding and nonlinearity compensation,” in Proceedings of OFC/NFOEC (2012), PDP5C.4.

H. Zhang, J.-X. Cai, H. G. Batshon, M. V. Mazurczyk, O. Sinkin, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency,” in Proceedings of OFC/NFOEC (2013), PDP5A.6.

M. V. Mazurczyk, “Spectral shaping for high spectral efficiency in long-haul optical transmission systems,” in Proceedings of ECOC (2013), We.4.D.2.

J.-X. Cai, H. Zhang, H. G. Batshon, M. V. Mazurczyk, O. Sinkin, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency,” accepted to J. Lightwave Technol.

O. V. Sinkin, J.-X. Cai, D. G. Foursa, G. Mohs, and A. Pilipetskii, “Impact of broadband four-wave mixing on system characterization,” in Proceedings of OFC/NFOEC (2013), OTh3G.3.
[Crossref]

J.-X. Cai, O. V. Sinkin, H. Zhang, H. G. Batshon, M. V. Mazurczyk, D. G. Foursa, A. Pilipetskii, and G. Mohs, “Nonlinearity compensation benefit in high capacity ultra-long haul transmission systems,” in Proceedings of ECOC (2013), We.4.D.2.

H. Zhang, H. G. Batshon, D. G. Foursa, M. V. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Proceedings of OFC/NFOEC (2013), OTu2B.3.
[Crossref]

M. Salsi, A. Ghazisaeidi, P. Tran, R. Muller, L. Schmalen, J. Renaudier, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “31 Tb/s transmission over 7,200 km using 46 Gbaud PDM-8QAM with optimized error correcting code rate,” in Proceedings of OECC (2013), PDP3-5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of de-correlated 3 rail 152x200 Gb/s Nyquist PDM 16QAM transmitter, circulating loop test bed and 200/400 Gb/s PDM 16QAM receiver with dual 100 GS/s sampling scopes.
Fig. 2
Fig. 2 Performance (with NLC) vs. transmitter pre emphasis along with noise loaded back to back at 6.0 b/s/Hz SE. Left: 200Gb/s after 9,207 km (17 loops); right: 400Gb/s after 8,124 km (15 loops)
Fig. 3
Fig. 3 Transmission performance for three channels at nominal power.
Fig. 4
Fig. 4 Received OSNR (in 0.1nm RBW) and optical spectrum after 9,748 km.
Fig. 5
Fig. 5 200 Gb/s (152x256 Gb/s) performance at 6.0 b/s/Hz after 9,748 km.
Fig. 6
Fig. 6 400 Gb/s (76x512 Gb/s) performance at 6.0 b/s/Hz after 8,665 km.

Metrics