Abstract

Wave interference is a fundamental physical phenomenon. Traditionally, the coherent effect of two identical point sources only takes place when the optical path is an integer number of wavelengths. In this paper, we show that mu and epsilon near zero (MENZ) metamaterials can be used to realize a perfectly constructive and isotropic interference. No matter how many point sources are embedded in the MENZ region, the wavefronts overlap perfectly. This translates into a total relaxation of the conventional condition for coherence enabled by the apparent infinite wavelength of the fields within MENZ metamaterials. Furthermore, we investigate crucial parameters such as the shape and size of the MENZ region. We demonstrate that flat sided geometries give rise to constructive interference beams serving as a powerful design mean. We also reveal the importance of relying on deeply sub-wavelength MENZ volumes as larger sizes increase the impedance and therefore reduce the output power of the device. The proposed concepts bear significance for current trends in antenna design which are inspired by the recent developments of electromagnetic metamaterials. Moreover, the perfect coherence effect can be appealing for power combiners, especially in the terahertz where sources are dim, as the irradiation intensity scales with the square of the number of embedded sources.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. D. Lee, E. J. Jung, M. Y. Jeong, Z. Chen, C. S. Kim, “Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer,” Meas. Sci. Technol. 24(6), 065101 (2013).
    [CrossRef] [PubMed]
  2. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
  3. X. Fang, C. R. Liao, D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
    [CrossRef] [PubMed]
  4. H. Müller, A. Peters, S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature 463(7283), 926–929 (2010).
    [CrossRef] [PubMed]
  5. R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, “Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy,” Nat. Mater. 10(4), 278–281 (2011).
    [CrossRef] [PubMed]
  6. J. J. Li, X. F. Zang, J. F. Mao, M. Tang, Y. M. Zhu, S. L. Zhuang, “Overlapped optics induced perfect coherent effects,” Sci. Rep. 3, 3569 (2013).
    [PubMed]
  7. X. F. Zang, C. Shi, Z. Li, L. Chen, B. Cai, Y. M. Zhu, H. B. Zhu, “Illusion induced overlapped optics,” Opt. Express 22(1), 582–592 (2014).
    [CrossRef] [PubMed]
  8. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  9. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  10. J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
    [CrossRef]
  11. R. Zhao, Y. Luo, A. I. Fernández-Domínguez, J. B. Pendry, “Description of van der Waals Interactions Using Transformation Optics,” Phys. Rev. Lett. 111(3), 033602 (2013).
    [CrossRef] [PubMed]
  12. J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
    [CrossRef] [PubMed]
  13. T. H. Li, M. Huang, J. J. Yang, W. J. Zhu, J. Zeng, “A Novel Method for Designing Electromagnetic Shrinking Device with Homogeneous Material Parameters,” IEEE Trans. Magn. 49(10), 5280–5286 (2013).
    [CrossRef]
  14. K. Zhang, Q. Wu, F.-Y. Meng, L.-W. Li, “Metamaterials With Tunable Negative Permeability Based on Mie Resonance,” IEEE Trans. Magn. 48(11), 4289–4292 (2012).
    [CrossRef]
  15. H. Y. Chen, C. T. Chan, “Acoustic cloaking and transformation acoustics,” J. Phys. D Appl. Phys. 43(11), 113001 (2010).
    [CrossRef]
  16. J. J. Yang, M. Huang, G. H. Cai, R. S. Xie, J. Yang, “Design of Acoustic Metamaterial Devices Based on Inverse Method,” J. Vib. Acoust. 135(5), 051024 (2013).
    [CrossRef]
  17. S. Guenneau, C. Amra, D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
    [CrossRef] [PubMed]
  18. R. Schittny, M. Kadic, S. Guenneau, M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
    [CrossRef] [PubMed]
  19. A. Alù, M. G. Silveirinha, A. Salandrino, N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [CrossRef]
  20. A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
    [CrossRef]
  21. A. Ourir, A. Maurel, V. Pagneux, “Tunneling of electromagnetic energy in multiple connected leads using ε-near-zero materials,” Opt. Lett. 38(12), 2092–2094 (2013).
    [CrossRef] [PubMed]
  22. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
    [CrossRef] [PubMed]
  23. W. Zhu, I. D. Rukhlenko, M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett. 102(1), 011910 (2013).
    [CrossRef]
  24. J. J. Yang, M. Huang, J. H. Peng, “Directive Emission Obtained by Mu and Epsilon-Near-Zero Metamaterials,” Radioengineering 18(2), 124–128 (2009).
  25. B. Wang, K. M. Huang, “Shaping the radiation pattern with Mu and Epsilon-near-zero metamaterials,” Prog. Electromagnetics Res. 106, 107–119 (2010).
    [CrossRef]
  26. Q. Cheng, W. X. Jiang, T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett. 99(13), 131913 (2011).
    [CrossRef]
  27. H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
    [CrossRef] [PubMed]
  28. Q. Cheng, W. X. Jiang, T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
    [CrossRef] [PubMed]
  29. M. Silveirinha, N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
    [CrossRef]

2014 (1)

2013 (11)

A. Ourir, A. Maurel, V. Pagneux, “Tunneling of electromagnetic energy in multiple connected leads using ε-near-zero materials,” Opt. Lett. 38(12), 2092–2094 (2013).
[CrossRef] [PubMed]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[CrossRef] [PubMed]

H. D. Lee, E. J. Jung, M. Y. Jeong, Z. Chen, C. S. Kim, “Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer,” Meas. Sci. Technol. 24(6), 065101 (2013).
[CrossRef] [PubMed]

J. J. Li, X. F. Zang, J. F. Mao, M. Tang, Y. M. Zhu, S. L. Zhuang, “Overlapped optics induced perfect coherent effects,” Sci. Rep. 3, 3569 (2013).
[PubMed]

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[CrossRef]

R. Zhao, Y. Luo, A. I. Fernández-Domínguez, J. B. Pendry, “Description of van der Waals Interactions Using Transformation Optics,” Phys. Rev. Lett. 111(3), 033602 (2013).
[CrossRef] [PubMed]

T. H. Li, M. Huang, J. J. Yang, W. J. Zhu, J. Zeng, “A Novel Method for Designing Electromagnetic Shrinking Device with Homogeneous Material Parameters,” IEEE Trans. Magn. 49(10), 5280–5286 (2013).
[CrossRef]

J. J. Yang, M. Huang, G. H. Cai, R. S. Xie, J. Yang, “Design of Acoustic Metamaterial Devices Based on Inverse Method,” J. Vib. Acoust. 135(5), 051024 (2013).
[CrossRef]

R. Schittny, M. Kadic, S. Guenneau, M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[CrossRef]

W. Zhu, I. D. Rukhlenko, M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett. 102(1), 011910 (2013).
[CrossRef]

2012 (3)

K. Zhang, Q. Wu, F.-Y. Meng, L.-W. Li, “Metamaterials With Tunable Negative Permeability Based on Mie Resonance,” IEEE Trans. Magn. 48(11), 4289–4292 (2012).
[CrossRef]

Q. Cheng, W. X. Jiang, T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[CrossRef] [PubMed]

S. Guenneau, C. Amra, D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[CrossRef] [PubMed]

2011 (3)

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).

R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, “Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy,” Nat. Mater. 10(4), 278–281 (2011).
[CrossRef] [PubMed]

Q. Cheng, W. X. Jiang, T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett. 99(13), 131913 (2011).
[CrossRef]

2010 (4)

B. Wang, K. M. Huang, “Shaping the radiation pattern with Mu and Epsilon-near-zero metamaterials,” Prog. Electromagnetics Res. 106, 107–119 (2010).
[CrossRef]

H. Müller, A. Peters, S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature 463(7283), 926–929 (2010).
[CrossRef] [PubMed]

H. Y. Chen, C. T. Chan, “Acoustic cloaking and transformation acoustics,” J. Phys. D Appl. Phys. 43(11), 113001 (2010).
[CrossRef]

X. Fang, C. R. Liao, D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
[CrossRef] [PubMed]

2009 (2)

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

J. J. Yang, M. Huang, J. H. Peng, “Directive Emission Obtained by Mu and Epsilon-Near-Zero Metamaterials,” Radioengineering 18(2), 124–128 (2009).

2007 (2)

A. Alù, M. G. Silveirinha, A. Salandrino, N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[CrossRef]

M. Silveirinha, N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[CrossRef]

2006 (2)

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

2004 (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[CrossRef] [PubMed]

Abe, E.

R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, “Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy,” Nat. Mater. 10(4), 278–281 (2011).
[CrossRef] [PubMed]

Alù, A.

A. Alù, M. G. Silveirinha, A. Salandrino, N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[CrossRef]

Amra, C.

Bang, O.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).

Basharin, A. A.

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[CrossRef]

Cai, B.

Cai, G. H.

J. J. Yang, M. Huang, G. H. Cai, R. S. Xie, J. Yang, “Design of Acoustic Metamaterial Devices Based on Inverse Method,” J. Vib. Acoust. 135(5), 051024 (2013).
[CrossRef]

Chan, C. T.

H. Y. Chen, C. T. Chan, “Acoustic cloaking and transformation acoustics,” J. Phys. D Appl. Phys. 43(11), 113001 (2010).
[CrossRef]

Chen, H. Y.

H. Y. Chen, C. T. Chan, “Acoustic cloaking and transformation acoustics,” J. Phys. D Appl. Phys. 43(11), 113001 (2010).
[CrossRef]

Chen, L.

Chen, Z.

H. D. Lee, E. J. Jung, M. Y. Jeong, Z. Chen, C. S. Kim, “Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer,” Meas. Sci. Technol. 24(6), 065101 (2013).
[CrossRef] [PubMed]

Cheng, Q.

Q. Cheng, W. X. Jiang, T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[CrossRef] [PubMed]

Q. Cheng, W. X. Jiang, T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett. 99(13), 131913 (2011).
[CrossRef]

Chu, S.

H. Müller, A. Peters, S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature 463(7283), 926–929 (2010).
[CrossRef] [PubMed]

Cui, T. J.

Q. Cheng, W. X. Jiang, T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[CrossRef] [PubMed]

Q. Cheng, W. X. Jiang, T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett. 99(13), 131913 (2011).
[CrossRef]

Economou, E. N.

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[CrossRef]

Engheta, N.

M. Silveirinha, N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[CrossRef]

Fang, X.

Fernández-Domínguez, A. I.

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[CrossRef]

R. Zhao, Y. Luo, A. I. Fernández-Domínguez, J. B. Pendry, “Description of van der Waals Interactions Using Transformation Optics,” Phys. Rev. Lett. 111(3), 033602 (2013).
[CrossRef] [PubMed]

Guenneau, S.

R. Schittny, M. Kadic, S. Guenneau, M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

S. Guenneau, C. Amra, D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[CrossRef] [PubMed]

Hosokawa, F.

R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, “Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy,” Nat. Mater. 10(4), 278–281 (2011).
[CrossRef] [PubMed]

Huang, K. M.

B. Wang, K. M. Huang, “Shaping the radiation pattern with Mu and Epsilon-near-zero metamaterials,” Prog. Electromagnetics Res. 106, 107–119 (2010).
[CrossRef]

Huang, M.

J. J. Yang, M. Huang, G. H. Cai, R. S. Xie, J. Yang, “Design of Acoustic Metamaterial Devices Based on Inverse Method,” J. Vib. Acoust. 135(5), 051024 (2013).
[CrossRef]

T. H. Li, M. Huang, J. J. Yang, W. J. Zhu, J. Zeng, “A Novel Method for Designing Electromagnetic Shrinking Device with Homogeneous Material Parameters,” IEEE Trans. Magn. 49(10), 5280–5286 (2013).
[CrossRef]

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

J. J. Yang, M. Huang, J. H. Peng, “Directive Emission Obtained by Mu and Epsilon-Near-Zero Metamaterials,” Radioengineering 18(2), 124–128 (2009).

Ishikawa, R.

R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, “Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy,” Nat. Mater. 10(4), 278–281 (2011).
[CrossRef] [PubMed]

Jeong, M. Y.

H. D. Lee, E. J. Jung, M. Y. Jeong, Z. Chen, C. S. Kim, “Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer,” Meas. Sci. Technol. 24(6), 065101 (2013).
[CrossRef] [PubMed]

Jiang, W. X.

Q. Cheng, W. X. Jiang, T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[CrossRef] [PubMed]

Q. Cheng, W. X. Jiang, T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett. 99(13), 131913 (2011).
[CrossRef]

Jung, E. J.

H. D. Lee, E. J. Jung, M. Y. Jeong, Z. Chen, C. S. Kim, “Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer,” Meas. Sci. Technol. 24(6), 065101 (2013).
[CrossRef] [PubMed]

Kadic, M.

R. Schittny, M. Kadic, S. Guenneau, M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

Kafesaki, M.

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[CrossRef]

Kalli, K.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).

Khan, L.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).

Kim, C. S.

H. D. Lee, E. J. Jung, M. Y. Jeong, Z. Chen, C. S. Kim, “Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer,” Meas. Sci. Technol. 24(6), 065101 (2013).
[CrossRef] [PubMed]

Kondo, Y.

R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, “Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy,” Nat. Mater. 10(4), 278–281 (2011).
[CrossRef] [PubMed]

Lee, H. D.

H. D. Lee, E. J. Jung, M. Y. Jeong, Z. Chen, C. S. Kim, “Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer,” Meas. Sci. Technol. 24(6), 065101 (2013).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Li, J. J.

J. J. Li, X. F. Zang, J. F. Mao, M. Tang, Y. M. Zhu, S. L. Zhuang, “Overlapped optics induced perfect coherent effects,” Sci. Rep. 3, 3569 (2013).
[PubMed]

Li, L.-W.

K. Zhang, Q. Wu, F.-Y. Meng, L.-W. Li, “Metamaterials With Tunable Negative Permeability Based on Mie Resonance,” IEEE Trans. Magn. 48(11), 4289–4292 (2012).
[CrossRef]

Li, T. H.

T. H. Li, M. Huang, J. J. Yang, W. J. Zhu, J. Zeng, “A Novel Method for Designing Electromagnetic Shrinking Device with Homogeneous Material Parameters,” IEEE Trans. Magn. 49(10), 5280–5286 (2013).
[CrossRef]

Li, Z.

Liao, C. R.

Luo, Y.

R. Zhao, Y. Luo, A. I. Fernández-Domínguez, J. B. Pendry, “Description of van der Waals Interactions Using Transformation Optics,” Phys. Rev. Lett. 111(3), 033602 (2013).
[CrossRef] [PubMed]

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[CrossRef]

Mao, J. F.

J. J. Li, X. F. Zang, J. F. Mao, M. Tang, Y. M. Zhu, S. L. Zhuang, “Overlapped optics induced perfect coherent effects,” Sci. Rep. 3, 3569 (2013).
[PubMed]

Maurel, A.

Mavidis, C.

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[CrossRef]

Meng, F.-Y.

K. Zhang, Q. Wu, F.-Y. Meng, L.-W. Li, “Metamaterials With Tunable Negative Permeability Based on Mie Resonance,” IEEE Trans. Magn. 48(11), 4289–4292 (2012).
[CrossRef]

Müller, H.

H. Müller, A. Peters, S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature 463(7283), 926–929 (2010).
[CrossRef] [PubMed]

O’Brien, K.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[CrossRef] [PubMed]

Okunishi, E.

R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, “Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy,” Nat. Mater. 10(4), 278–281 (2011).
[CrossRef] [PubMed]

Ourir, A.

Pagneux, V.

Pendry, J. B.

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[CrossRef]

R. Zhao, Y. Luo, A. I. Fernández-Domínguez, J. B. Pendry, “Description of van der Waals Interactions Using Transformation Optics,” Phys. Rev. Lett. 111(3), 033602 (2013).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Peng, J. H.

J. J. Yang, M. Huang, J. H. Peng, “Directive Emission Obtained by Mu and Epsilon-Near-Zero Metamaterials,” Radioengineering 18(2), 124–128 (2009).

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

Peters, A.

H. Müller, A. Peters, S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature 463(7283), 926–929 (2010).
[CrossRef] [PubMed]

Premaratne, M.

W. Zhu, I. D. Rukhlenko, M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett. 102(1), 011910 (2013).
[CrossRef]

Rasmussen, H. K.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).

Rukhlenko, I. D.

W. Zhu, I. D. Rukhlenko, M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett. 102(1), 011910 (2013).
[CrossRef]

Salandrino, A.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[CrossRef] [PubMed]

A. Alù, M. G. Silveirinha, A. Salandrino, N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[CrossRef]

Sawada, H.

R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, “Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy,” Nat. Mater. 10(4), 278–281 (2011).
[CrossRef] [PubMed]

Schittny, R.

R. Schittny, M. Kadic, S. Guenneau, M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Shi, C.

Silveirinha, M.

M. Silveirinha, N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[CrossRef]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[CrossRef]

Stefani, A.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).

Suchowski, H.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[CrossRef] [PubMed]

Tang, M.

J. J. Li, X. F. Zang, J. F. Mao, M. Tang, Y. M. Zhu, S. L. Zhuang, “Overlapped optics induced perfect coherent effects,” Sci. Rep. 3, 3569 (2013).
[PubMed]

Veynante, D.

Wang, B.

B. Wang, K. M. Huang, “Shaping the radiation pattern with Mu and Epsilon-near-zero metamaterials,” Prog. Electromagnetics Res. 106, 107–119 (2010).
[CrossRef]

Wang, D. N.

Webb, D. J.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).

Wegener, M.

R. Schittny, M. Kadic, S. Guenneau, M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

Wong, Z. J.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[CrossRef] [PubMed]

Wu, Q.

K. Zhang, Q. Wu, F.-Y. Meng, L.-W. Li, “Metamaterials With Tunable Negative Permeability Based on Mie Resonance,” IEEE Trans. Magn. 48(11), 4289–4292 (2012).
[CrossRef]

Xiao, Z.

Xie, R. S.

J. J. Yang, M. Huang, G. H. Cai, R. S. Xie, J. Yang, “Design of Acoustic Metamaterial Devices Based on Inverse Method,” J. Vib. Acoust. 135(5), 051024 (2013).
[CrossRef]

Yang, C. F.

Yang, J.

J. J. Yang, M. Huang, G. H. Cai, R. S. Xie, J. Yang, “Design of Acoustic Metamaterial Devices Based on Inverse Method,” J. Vib. Acoust. 135(5), 051024 (2013).
[CrossRef]

Yang, J. J.

J. J. Yang, M. Huang, G. H. Cai, R. S. Xie, J. Yang, “Design of Acoustic Metamaterial Devices Based on Inverse Method,” J. Vib. Acoust. 135(5), 051024 (2013).
[CrossRef]

T. H. Li, M. Huang, J. J. Yang, W. J. Zhu, J. Zeng, “A Novel Method for Designing Electromagnetic Shrinking Device with Homogeneous Material Parameters,” IEEE Trans. Magn. 49(10), 5280–5286 (2013).
[CrossRef]

J. J. Yang, M. Huang, C. F. Yang, Z. Xiao, J. H. Peng, “Metamaterial electromagnetic concentrators with arbitrary geometries,” Opt. Express 17(22), 19656–19661 (2009).
[CrossRef] [PubMed]

J. J. Yang, M. Huang, J. H. Peng, “Directive Emission Obtained by Mu and Epsilon-Near-Zero Metamaterials,” Radioengineering 18(2), 124–128 (2009).

Yin, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[CrossRef] [PubMed]

Yuan, W.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).

Zang, X. F.

X. F. Zang, C. Shi, Z. Li, L. Chen, B. Cai, Y. M. Zhu, H. B. Zhu, “Illusion induced overlapped optics,” Opt. Express 22(1), 582–592 (2014).
[CrossRef] [PubMed]

J. J. Li, X. F. Zang, J. F. Mao, M. Tang, Y. M. Zhu, S. L. Zhuang, “Overlapped optics induced perfect coherent effects,” Sci. Rep. 3, 3569 (2013).
[PubMed]

Zeng, J.

T. H. Li, M. Huang, J. J. Yang, W. J. Zhu, J. Zeng, “A Novel Method for Designing Electromagnetic Shrinking Device with Homogeneous Material Parameters,” IEEE Trans. Magn. 49(10), 5280–5286 (2013).
[CrossRef]

Zhang, K.

K. Zhang, Q. Wu, F.-Y. Meng, L.-W. Li, “Metamaterials With Tunable Negative Permeability Based on Mie Resonance,” IEEE Trans. Magn. 48(11), 4289–4292 (2012).
[CrossRef]

Zhang, X.

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[CrossRef] [PubMed]

Zhao, R.

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[CrossRef]

R. Zhao, Y. Luo, A. I. Fernández-Domínguez, J. B. Pendry, “Description of van der Waals Interactions Using Transformation Optics,” Phys. Rev. Lett. 111(3), 033602 (2013).
[CrossRef] [PubMed]

Zhu, H. B.

Zhu, W.

W. Zhu, I. D. Rukhlenko, M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett. 102(1), 011910 (2013).
[CrossRef]

Zhu, W. J.

T. H. Li, M. Huang, J. J. Yang, W. J. Zhu, J. Zeng, “A Novel Method for Designing Electromagnetic Shrinking Device with Homogeneous Material Parameters,” IEEE Trans. Magn. 49(10), 5280–5286 (2013).
[CrossRef]

Zhu, Y. M.

X. F. Zang, C. Shi, Z. Li, L. Chen, B. Cai, Y. M. Zhu, H. B. Zhu, “Illusion induced overlapped optics,” Opt. Express 22(1), 582–592 (2014).
[CrossRef] [PubMed]

J. J. Li, X. F. Zang, J. F. Mao, M. Tang, Y. M. Zhu, S. L. Zhuang, “Overlapped optics induced perfect coherent effects,” Sci. Rep. 3, 3569 (2013).
[PubMed]

Zhuang, S. L.

J. J. Li, X. F. Zang, J. F. Mao, M. Tang, Y. M. Zhu, S. L. Zhuang, “Overlapped optics induced perfect coherent effects,” Sci. Rep. 3, 3569 (2013).
[PubMed]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

W. Zhu, I. D. Rukhlenko, M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett. 102(1), 011910 (2013).
[CrossRef]

Q. Cheng, W. X. Jiang, T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett. 99(13), 131913 (2011).
[CrossRef]

IEEE Trans. Magn. (2)

T. H. Li, M. Huang, J. J. Yang, W. J. Zhu, J. Zeng, “A Novel Method for Designing Electromagnetic Shrinking Device with Homogeneous Material Parameters,” IEEE Trans. Magn. 49(10), 5280–5286 (2013).
[CrossRef]

K. Zhang, Q. Wu, F.-Y. Meng, L.-W. Li, “Metamaterials With Tunable Negative Permeability Based on Mie Resonance,” IEEE Trans. Magn. 48(11), 4289–4292 (2012).
[CrossRef]

J. Phys. D Appl. Phys. (1)

H. Y. Chen, C. T. Chan, “Acoustic cloaking and transformation acoustics,” J. Phys. D Appl. Phys. 43(11), 113001 (2010).
[CrossRef]

J. Vib. Acoust. (1)

J. J. Yang, M. Huang, G. H. Cai, R. S. Xie, J. Yang, “Design of Acoustic Metamaterial Devices Based on Inverse Method,” J. Vib. Acoust. 135(5), 051024 (2013).
[CrossRef]

Meas. Sci. Technol. (1)

H. D. Lee, E. J. Jung, M. Y. Jeong, Z. Chen, C. S. Kim, “Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer,” Meas. Sci. Technol. 24(6), 065101 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, “Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy,” Nat. Mater. 10(4), 278–281 (2011).
[CrossRef] [PubMed]

Nat. Phys. (1)

J. B. Pendry, A. I. Fernández-Domínguez, Y. Luo, R. Zhao, “Capturing photons with transformation optics,” Nat. Phys. 9(8), 518–522 (2013).
[CrossRef]

Nature (1)

H. Müller, A. Peters, S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature 463(7283), 926–929 (2010).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (3)

M. Silveirinha, N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[CrossRef]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

R. Zhao, Y. Luo, A. I. Fernández-Domínguez, J. B. Pendry, “Description of van der Waals Interactions Using Transformation Optics,” Phys. Rev. Lett. 111(3), 033602 (2013).
[CrossRef] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, M. Wegener, “Experiments on Transformation Thermodynamics: Molding the Flow of Heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[CrossRef] [PubMed]

Q. Cheng, W. X. Jiang, T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[CrossRef] [PubMed]

Prog. Electromagnetics Res. (1)

B. Wang, K. M. Huang, “Shaping the radiation pattern with Mu and Epsilon-near-zero metamaterials,” Prog. Electromagnetics Res. 106, 107–119 (2010).
[CrossRef]

Radioengineering (1)

J. J. Yang, M. Huang, J. H. Peng, “Directive Emission Obtained by Mu and Epsilon-Near-Zero Metamaterials,” Radioengineering 18(2), 124–128 (2009).

Sci. Rep. (1)

J. J. Li, X. F. Zang, J. F. Mao, M. Tang, Y. M. Zhu, S. L. Zhuang, “Overlapped optics induced perfect coherent effects,” Sci. Rep. 3, 3569 (2013).
[PubMed]

Science (3)

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, X. Zhang, “Phase Mismatch-Free Nonlinear Propagation in Optical Zero-Index Materials,” Science 342(6163), 1223–1226 (2013).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulation model showing the point sources, the MENZ region (in orange) and the PML region (in blue).

Fig. 2
Fig. 2

Electric field distribution in the computational domain. (a) Two identical in-phase point sources are located at the position of (0,-0.4m) and (0, 0.4m), respectively. (b) The two point sources are embedded in the MENZ region.(c) Far field for the structure with N point sources, each one has an intensity of 1/N (A). (d) Normalized far field power intensity for the structure with N point sources, each one has an intensity of 1(A).

Fig. 3
Fig. 3

Electric field distribution of the computation domain with a square (a) and a triangle (b) MENZ region. (c) Normalized far field power intensity.

Fig. 4
Fig. 4

Far field power for a single point source embedded in a MENZ region with radius R / λ . Black crosses are for FEM simulations presented in this work, the blue line denotes the theoretical result as predicted by [22] and the interrupted red line represents the geometric transmission T = 1 | ρ | 2 as derived in [29].

Fig. 5
Fig. 5

(a) Schematic structure of the LC network model. (b) Unit cell of the DPM region. (c) Unit cell of the MENZ region.

Fig. 6
Fig. 6

Voltage distribution of the LC network model. (a) The perfect coherent effect for two point sources in a MENZ region and (b) the wave interference phenomenon which is observed in a DPM material. (c) Voltage distribution for the simulation model with different MENZ cell layers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I total =( I 1 + I 2 )(1+ 2 I 1 I 2 I 1 + I 2 cosδ),
I total =4 I 0 cos 2 ( πΔ λ ).
Z ( ω ) = 1 j ω C L + 1 2 j ω L
Y ( ω ) = 1 j ω L L + j ω C R .

Metrics