Abstract

We present a novel short, medium, and long range displacement sensor using a Kerr phase-interrogator. Displacement induces relative phase variation between two orthogonally polarized sinusoidal optical signals. The Kerr phase-interrogator converts the phase variation into power variation through Kerr induced phase-modulation. Displacement sensing over a range of 12 mm with micron level resolution around the quadrature points is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Berkovic, E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4, 441–471 (2012).
    [CrossRef]
  2. R. O. Cook, C. W. Hamm, “Fiber optic lever displacement transducer,” Appl. Opt. 18, 3230–3241 (1979).
    [CrossRef] [PubMed]
  3. Z. Ji, M. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21, 339–341 (1989).
    [CrossRef]
  4. T. Dabbs, M. Glass, “Fiber-optic confocal microscope: Focon,” Appl. Opt. 31, 3030–3035 (1992).
    [CrossRef] [PubMed]
  5. F. J. Eberhardt, F. A. Andrews, “Laser heterodyne system for measurement and analysis of vibration,” J. Acoust. Soc. Am. 48, 603–609 (1970).
    [CrossRef]
  6. C. R. Brown, G. R. Brown, D. H. Niblett, “Measurement of small strain amplitudes in internal friction experiments by means of a laser interferometer,” J. Phys. E: Sci. Instrum. 5, 966–967 (1972).
    [CrossRef]
  7. B. J. Pernick, “Self-consistent and direct reading laser homodyne measurement technique,” Appl. Opt. 12, 607–610 (1973).
    [CrossRef] [PubMed]
  8. D. Nitzan, A. E. Brain, R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65, 206–220 (1977).
    [CrossRef]
  9. W. T. Estler, “High-accuracy displacement interferometry in air,” Appl. Opt. 24, 808–815 (1985).
    [CrossRef] [PubMed]
  10. M. Nevievre, E. Popov, B. Bojhkov, L. Tsonev, S. Tonchev, “High-accuracy translation-rotation encoder with two gratings in a littrow mount,” Appl. Opt. 38, 67–76 (1999).
    [CrossRef]
  11. S. Bartlett, F. Farahi, D. Jackson, “A dual resolution noncontact vibration and displacement sensor based upon a two wavelength source,” Rev. Sci. Instrum. 61, 1014–1017 (1990).
    [CrossRef]
  12. S. Yim, D. Cho, J. Park, “Two-frequency interferometer for a displacement measurement,” Am. J. Phys. 81, 153–156 (2013).
    [CrossRef]
  13. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,” Opt. Lett. 21, 1966–1968 (1996).
    [CrossRef] [PubMed]
  14. M. Rochette, C. Baker, R. Ahmad, “All-optical polarization-mode dispersion monitor for return-to-zero optical signals at 40 gbits/s and beyond,” Opt. Lett. 35, 3703–3705 (2010).
    [CrossRef] [PubMed]
  15. D. A. Jackson, A. Dandridge, S. K. Sheem, “Measurement of small phase shifts using a single-mode optical-fiber interferometer,” Opt. Lett. 5, 139–141 (1980).
    [CrossRef] [PubMed]
  16. G. P. Agrawal, Nonlinear Fiber Optics, 4 (Academic, 2007).

2013 (1)

S. Yim, D. Cho, J. Park, “Two-frequency interferometer for a displacement measurement,” Am. J. Phys. 81, 153–156 (2013).
[CrossRef]

2012 (1)

G. Berkovic, E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4, 441–471 (2012).
[CrossRef]

2010 (1)

1999 (1)

1996 (1)

1992 (1)

1990 (1)

S. Bartlett, F. Farahi, D. Jackson, “A dual resolution noncontact vibration and displacement sensor based upon a two wavelength source,” Rev. Sci. Instrum. 61, 1014–1017 (1990).
[CrossRef]

1989 (1)

Z. Ji, M. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21, 339–341 (1989).
[CrossRef]

1985 (1)

1980 (1)

1979 (1)

1977 (1)

D. Nitzan, A. E. Brain, R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65, 206–220 (1977).
[CrossRef]

1973 (1)

1972 (1)

C. R. Brown, G. R. Brown, D. H. Niblett, “Measurement of small strain amplitudes in internal friction experiments by means of a laser interferometer,” J. Phys. E: Sci. Instrum. 5, 966–967 (1972).
[CrossRef]

1970 (1)

F. J. Eberhardt, F. A. Andrews, “Laser heterodyne system for measurement and analysis of vibration,” J. Acoust. Soc. Am. 48, 603–609 (1970).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4 (Academic, 2007).

Ahmad, R.

Andrews, F. A.

F. J. Eberhardt, F. A. Andrews, “Laser heterodyne system for measurement and analysis of vibration,” J. Acoust. Soc. Am. 48, 603–609 (1970).
[CrossRef]

Baker, C.

Bartlett, S.

S. Bartlett, F. Farahi, D. Jackson, “A dual resolution noncontact vibration and displacement sensor based upon a two wavelength source,” Rev. Sci. Instrum. 61, 1014–1017 (1990).
[CrossRef]

Berkovic, G.

G. Berkovic, E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4, 441–471 (2012).
[CrossRef]

Bojhkov, B.

Boskovic, A.

Brain, A. E.

D. Nitzan, A. E. Brain, R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65, 206–220 (1977).
[CrossRef]

Brown, C. R.

C. R. Brown, G. R. Brown, D. H. Niblett, “Measurement of small strain amplitudes in internal friction experiments by means of a laser interferometer,” J. Phys. E: Sci. Instrum. 5, 966–967 (1972).
[CrossRef]

Brown, G. R.

C. R. Brown, G. R. Brown, D. H. Niblett, “Measurement of small strain amplitudes in internal friction experiments by means of a laser interferometer,” J. Phys. E: Sci. Instrum. 5, 966–967 (1972).
[CrossRef]

Chernikov, S. V.

Cho, D.

S. Yim, D. Cho, J. Park, “Two-frequency interferometer for a displacement measurement,” Am. J. Phys. 81, 153–156 (2013).
[CrossRef]

Cook, R. O.

Dabbs, T.

Dandridge, A.

Duda, R. O.

D. Nitzan, A. E. Brain, R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65, 206–220 (1977).
[CrossRef]

Eberhardt, F. J.

F. J. Eberhardt, F. A. Andrews, “Laser heterodyne system for measurement and analysis of vibration,” J. Acoust. Soc. Am. 48, 603–609 (1970).
[CrossRef]

Estler, W. T.

Farahi, F.

S. Bartlett, F. Farahi, D. Jackson, “A dual resolution noncontact vibration and displacement sensor based upon a two wavelength source,” Rev. Sci. Instrum. 61, 1014–1017 (1990).
[CrossRef]

Glass, M.

Gruner-Nielsen, L.

Hamm, C. W.

Jackson, D.

S. Bartlett, F. Farahi, D. Jackson, “A dual resolution noncontact vibration and displacement sensor based upon a two wavelength source,” Rev. Sci. Instrum. 61, 1014–1017 (1990).
[CrossRef]

Jackson, D. A.

Ji, Z.

Z. Ji, M. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21, 339–341 (1989).
[CrossRef]

Leu, M.

Z. Ji, M. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21, 339–341 (1989).
[CrossRef]

Levring, O. A.

Nevievre, M.

Niblett, D. H.

C. R. Brown, G. R. Brown, D. H. Niblett, “Measurement of small strain amplitudes in internal friction experiments by means of a laser interferometer,” J. Phys. E: Sci. Instrum. 5, 966–967 (1972).
[CrossRef]

Nitzan, D.

D. Nitzan, A. E. Brain, R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65, 206–220 (1977).
[CrossRef]

Park, J.

S. Yim, D. Cho, J. Park, “Two-frequency interferometer for a displacement measurement,” Am. J. Phys. 81, 153–156 (2013).
[CrossRef]

Pernick, B. J.

Popov, E.

Rochette, M.

Shafir, E.

G. Berkovic, E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4, 441–471 (2012).
[CrossRef]

Sheem, S. K.

Taylor, J. R.

Tonchev, S.

Tsonev, L.

Yim, S.

S. Yim, D. Cho, J. Park, “Two-frequency interferometer for a displacement measurement,” Am. J. Phys. 81, 153–156 (2013).
[CrossRef]

Adv. Opt. Photonics (1)

G. Berkovic, E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photonics 4, 441–471 (2012).
[CrossRef]

Am. J. Phys. (1)

S. Yim, D. Cho, J. Park, “Two-frequency interferometer for a displacement measurement,” Am. J. Phys. 81, 153–156 (2013).
[CrossRef]

Appl. Opt. (5)

J. Acoust. Soc. Am. (1)

F. J. Eberhardt, F. A. Andrews, “Laser heterodyne system for measurement and analysis of vibration,” J. Acoust. Soc. Am. 48, 603–609 (1970).
[CrossRef]

J. Phys. E: Sci. Instrum. (1)

C. R. Brown, G. R. Brown, D. H. Niblett, “Measurement of small strain amplitudes in internal friction experiments by means of a laser interferometer,” J. Phys. E: Sci. Instrum. 5, 966–967 (1972).
[CrossRef]

Opt. Laser Technol. (1)

Z. Ji, M. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21, 339–341 (1989).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (1)

D. Nitzan, A. E. Brain, R. O. Duda, “The measurement and use of registered reflectance and range data in scene analysis,” Proc. IEEE 65, 206–220 (1977).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Bartlett, F. Farahi, D. Jackson, “A dual resolution noncontact vibration and displacement sensor based upon a two wavelength source,” Rev. Sci. Instrum. 61, 1014–1017 (1990).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4 (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the Kerr phase-interrogator as a displacement sensor. CW: continuous-wave; EOM: electro-optic modulator; PC: polarization controller; PBS: polarization beam splitter; PBC: polarization beam combiner; EDFA: Erbium-doped fiber amplifier.

Fig. 2
Fig. 2

Calculated value of a) P(t) and b) P(f) at the output of the Kerr medium for different displacement values.

Fig. 3
Fig. 3

Spectrum at the output of the Kerr medium measured using an optical spectrum analyzer at different displacement values.

Fig. 4
Fig. 4

Measured and calculated power of the sidebands as a function of displacement.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A = P p / 2 cos ( π f s t + ϕ ) ,
A = P p / 2 cos ( π f s t + ϕ + π f s t d ) ,
A = P p / 2 cos ( π f s t + ϕ ) exp [ j γ P ( t ) L ] ,
A = P p / 2 cos ( π f s t + ϕ + 2 π f s D / c ) exp [ j γ P ( t ) L ] ,
P ( t ) = P p / 2 [ cos 2 ( π f s t + ϕ ) + cos 2 ( π f s t + ϕ + 2 π f s D / c ) ] .
P 1 P 0 = J 1 2 [ ( ϕ SPM / 2 ) cos ( 2 π f s D / c + ϕ 0 ) ] + J 2 2 [ ( ϕ SPM / 2 ) cos ( 2 π f s D / c + ϕ 0 ) ] J 0 2 [ ( ϕ SPM / 2 ) cos ( 2 π f s D / c + ϕ 0 ) ] + J 1 2 [ ( ϕ SPM / 2 ) cos ( 2 π f s D / c + ϕ 0 ) ]
P 1 P 0 = J 1 2 ( ϕ SPM / 2 ) J 0 2 ( ϕ SPM / 2 ) cos 2 ( 2 π f s D / c + ϕ 0 )
P 1 = P 1 max cos 2 ( 2 π f s D / c + ϕ 0 ) ,

Metrics