Abstract

We introduce a new scheme for two-dimensional IR spectroscopy in the partially collinear pump-probe geometry. Translating birefringent wedges allow generating phase-locked pump pulses with exceptional phase stability, in a simple and compact setup. A He-Ne tracking scheme permits to scan continuously the acquisition time. For a proof-of-principle demonstration we use lithium niobate, which allows operation up to 5 μm. Exploiting the inherent perpendicular polarizations of the two pump pulses, we also demonstrate signal enhancement and scattering suppression.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hamm, M. Lim, R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
    [CrossRef]
  2. P. Hamm, M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
    [CrossRef]
  3. M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, 2009).
    [CrossRef]
  4. G. D. Goodno, G. Dadusc, R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15, 1791–1794 (1998).
    [CrossRef]
  5. M. C. Asplund, M. T. Zanni, R. M. Hochstrasser, “Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes,” Proc. Natl. Acad. Sci. U.S.A. 97, 8219–8224 (2000).
    [CrossRef] [PubMed]
  6. S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31, 838–840 (2006).
    [CrossRef] [PubMed]
  7. L. P. DeFlores, R. A. Nicodemus, A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32, 2966 (2007).
    [CrossRef] [PubMed]
  8. U. Selig, F. Langhojer, F. Dimler, T. Lhrig, C. Schwarz, B. Gieseking, T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008).
    [CrossRef] [PubMed]
  9. J. Helbing, P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28, 171–178 (2011).
    [CrossRef]
  10. V. Cervetto, J. Helbing, J. Bredenbeck, P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
    [CrossRef] [PubMed]
  11. E. H. G. Backus, S. Garrett-Roe, P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665–2667 (2008).
    [CrossRef] [PubMed]
  12. W. Xiong, M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33, 1371–1373 (2008).
    [CrossRef] [PubMed]
  13. J. Réhault, J. Helbing, “Angle determination and scattering suppression in polarization-enhanced two-dimensional infrared spectroscopy in the pump-probe geometry,” Opt. Express 20, 21665–21677 (2012).
    [CrossRef] [PubMed]
  14. J. Réhault, J. Helbing, “Exploring the polarization degrees of freedom in collinear two-dimensional infrared spectroscopy,” EPJ Web of Conferences 41, 05003 (2013).
    [CrossRef]
  15. S.-H. Shim, M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
    [CrossRef] [PubMed]
  16. D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
    [CrossRef]
  17. D. Brida, C. Manzoni, G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37, 3027–3029 (2012).
    [CrossRef] [PubMed]
  18. M. T. Zanni, N.-H. Ge, Y. S. Kim, R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. USA 98, 11265–11270 (2001).
    [CrossRef] [PubMed]
  19. J. Réhault, V. Zanirato, M. Olivucci, J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
    [CrossRef] [PubMed]
  20. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  21. D. E. Zelmon, D. L. Small, D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997).
    [CrossRef]
  22. N. Demirdöven, M. Khalil, O. Golonzka, A. Tokmakoff, “Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses” Opt. Lett. 27, 433 (2002).
    [CrossRef]
  23. C. T. Middleton, A. M. Woys, S. S. Mukherjee, M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods 52, 12–22 (2010).
    [CrossRef] [PubMed]
  24. S. T. Roberts, J. J. Loparo, K. Ramasesha, A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
    [CrossRef]
  25. K. F. Lee, A. Bonvalet, P. Nuernberger, M. Joffre, “Unobtrusive interferometer tracking by pathlength oscillation for multidimensionalspectroscopy,” Opt. Express 17, 12379–12384 (2009).
    [CrossRef] [PubMed]
  26. M. Downs, K. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precision Engineering 1, 85–88 (1979).
    [CrossRef]
  27. L. Lepetit, G. Chériaux, M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [CrossRef]
  28. U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of wavelength and composition,” J. Appl. Phys. 73, 3472–3476 (1993).
    [CrossRef]
  29. R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, P. Donaldson, “Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments,” Opt. Express 18, 27067–27078 (2010).
    [CrossRef]
  30. F. Perakis, P. Hamm, “Two-dimensional infrared spectroscopy of supercooled water,” J. Phys. Chem. B 115, 5289–5293 (2011).
    [CrossRef]
  31. T. Steinel, J. B. Asbury, J. Zheng, M. D. Fayer, “Watching hydrogen bonds break: a transient absorption study of water,” J. Phys. Chem. A 108, 10957–10964 (2004).
    [CrossRef] [PubMed]
  32. R. Maksimenka, P. Nuernberger, K. F. Lee, A. Bonvalet, J. Milkiewicz, C. Barta, M. Klima, T. Oksenhendler, P. Tournois, D. Kaplan, M. Joffre, “Direct mid-infrared femtosecond pulse shaping with a calomel acousto-optic programmable dispersive filter,” Opt. Lett. 35, 3565–3567 (2010).
    [CrossRef] [PubMed]
  33. S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).
  34. K. Ataka, T. Kottke, J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. 49, 5416–5424 (2010).
    [CrossRef]
  35. H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009).
    [CrossRef] [PubMed]

2013

J. Réhault, J. Helbing, “Exploring the polarization degrees of freedom in collinear two-dimensional infrared spectroscopy,” EPJ Web of Conferences 41, 05003 (2013).
[CrossRef]

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[CrossRef]

2012

2011

J. Helbing, P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28, 171–178 (2011).
[CrossRef]

J. Réhault, V. Zanirato, M. Olivucci, J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[CrossRef] [PubMed]

S. T. Roberts, J. J. Loparo, K. Ramasesha, A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
[CrossRef]

F. Perakis, P. Hamm, “Two-dimensional infrared spectroscopy of supercooled water,” J. Phys. Chem. B 115, 5289–5293 (2011).
[CrossRef]

2010

K. Ataka, T. Kottke, J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. 49, 5416–5424 (2010).
[CrossRef]

C. T. Middleton, A. M. Woys, S. S. Mukherjee, M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods 52, 12–22 (2010).
[CrossRef] [PubMed]

R. Maksimenka, P. Nuernberger, K. F. Lee, A. Bonvalet, J. Milkiewicz, C. Barta, M. Klima, T. Oksenhendler, P. Tournois, D. Kaplan, M. Joffre, “Direct mid-infrared femtosecond pulse shaping with a calomel acousto-optic programmable dispersive filter,” Opt. Lett. 35, 3565–3567 (2010).
[CrossRef] [PubMed]

R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, P. Donaldson, “Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments,” Opt. Express 18, 27067–27078 (2010).
[CrossRef]

2009

K. F. Lee, A. Bonvalet, P. Nuernberger, M. Joffre, “Unobtrusive interferometer tracking by pathlength oscillation for multidimensionalspectroscopy,” Opt. Express 17, 12379–12384 (2009).
[CrossRef] [PubMed]

S.-H. Shim, M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009).
[CrossRef] [PubMed]

2008

2007

2006

2004

T. Steinel, J. B. Asbury, J. Zheng, M. D. Fayer, “Watching hydrogen bonds break: a transient absorption study of water,” J. Phys. Chem. A 108, 10957–10964 (2004).
[CrossRef] [PubMed]

V. Cervetto, J. Helbing, J. Bredenbeck, P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

2002

2001

M. T. Zanni, N.-H. Ge, Y. S. Kim, R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. USA 98, 11265–11270 (2001).
[CrossRef] [PubMed]

2000

M. C. Asplund, M. T. Zanni, R. M. Hochstrasser, “Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes,” Proc. Natl. Acad. Sci. U.S.A. 97, 8219–8224 (2000).
[CrossRef] [PubMed]

1998

P. Hamm, M. Lim, R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[CrossRef]

G. D. Goodno, G. Dadusc, R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15, 1791–1794 (1998).
[CrossRef]

1997

1995

1993

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of wavelength and composition,” J. Appl. Phys. 73, 3472–3476 (1993).
[CrossRef]

1979

M. Downs, K. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precision Engineering 1, 85–88 (1979).
[CrossRef]

Abrams, M. C.

S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

Asbury, J. B.

T. Steinel, J. B. Asbury, J. Zheng, M. D. Fayer, “Watching hydrogen bonds break: a transient absorption study of water,” J. Phys. Chem. A 108, 10957–10964 (2004).
[CrossRef] [PubMed]

Asplund, M. C.

M. C. Asplund, M. T. Zanni, R. M. Hochstrasser, “Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes,” Proc. Natl. Acad. Sci. U.S.A. 97, 8219–8224 (2000).
[CrossRef] [PubMed]

Ataka, K.

K. Ataka, T. Kottke, J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. 49, 5416–5424 (2010).
[CrossRef]

Backus, E. H. G.

Barta, C.

Betzler, K.

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of wavelength and composition,” J. Appl. Phys. 73, 3472–3476 (1993).
[CrossRef]

Bloem, R.

Bonvalet, A.

Brault, J. W.

S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

Bredenbeck, J.

V. Cervetto, J. Helbing, J. Bredenbeck, P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

Brida, D.

Brixner, T.

Cerullo, G.

Cervetto, V.

V. Cervetto, J. Helbing, J. Bredenbeck, P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

Chériaux, G.

Cho, M.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009).
[CrossRef] [PubMed]

M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, 2009).
[CrossRef]

Dadusc, G.

Davis, S. P.

S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

DeFlores, L. P.

Demirdöven, N.

Dimler, F.

Donaldson, P.

Downs, M.

M. Downs, K. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precision Engineering 1, 85–88 (1979).
[CrossRef]

Fayer, M. D.

T. Steinel, J. B. Asbury, J. Zheng, M. D. Fayer, “Watching hydrogen bonds break: a transient absorption study of water,” J. Phys. Chem. A 108, 10957–10964 (2004).
[CrossRef] [PubMed]

Fulmer, E. C.

Garrett-Roe, S.

Ge, N.-H.

M. T. Zanni, N.-H. Ge, Y. S. Kim, R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. USA 98, 11265–11270 (2001).
[CrossRef] [PubMed]

Gieseking, B.

Golonzka, O.

Goodno, G. D.

Ha, J.-H.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009).
[CrossRef] [PubMed]

Hamm, P.

J. Helbing, P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28, 171–178 (2011).
[CrossRef]

F. Perakis, P. Hamm, “Two-dimensional infrared spectroscopy of supercooled water,” J. Phys. Chem. B 115, 5289–5293 (2011).
[CrossRef]

R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, P. Donaldson, “Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments,” Opt. Express 18, 27067–27078 (2010).
[CrossRef]

E. H. G. Backus, S. Garrett-Roe, P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665–2667 (2008).
[CrossRef] [PubMed]

V. Cervetto, J. Helbing, J. Bredenbeck, P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

P. Hamm, M. Lim, R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[CrossRef]

P. Hamm, M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
[CrossRef]

Heberle, J.

K. Ataka, T. Kottke, J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. 49, 5416–5424 (2010).
[CrossRef]

Helbing, J.

J. Réhault, J. Helbing, “Exploring the polarization degrees of freedom in collinear two-dimensional infrared spectroscopy,” EPJ Web of Conferences 41, 05003 (2013).
[CrossRef]

J. Réhault, J. Helbing, “Angle determination and scattering suppression in polarization-enhanced two-dimensional infrared spectroscopy in the pump-probe geometry,” Opt. Express 20, 21665–21677 (2012).
[CrossRef] [PubMed]

J. Helbing, P. Hamm, “Compact implementation of Fourier transform two-dimensional IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B 28, 171–178 (2011).
[CrossRef]

J. Réhault, V. Zanirato, M. Olivucci, J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[CrossRef] [PubMed]

V. Cervetto, J. Helbing, J. Bredenbeck, P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

Hochstrasser, R. M.

M. T. Zanni, N.-H. Ge, Y. S. Kim, R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. USA 98, 11265–11270 (2001).
[CrossRef] [PubMed]

M. C. Asplund, M. T. Zanni, R. M. Hochstrasser, “Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes,” Proc. Natl. Acad. Sci. U.S.A. 97, 8219–8224 (2000).
[CrossRef] [PubMed]

P. Hamm, M. Lim, R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[CrossRef]

Jeon, S.-J.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009).
[CrossRef] [PubMed]

Joffre, M.

Jundt, D.

June, Y.-G.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009).
[CrossRef] [PubMed]

Kaplan, D.

Khalil, M.

Kim, Y. S.

M. T. Zanni, N.-H. Ge, Y. S. Kim, R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. USA 98, 11265–11270 (2001).
[CrossRef] [PubMed]

Kim, Z. H.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009).
[CrossRef] [PubMed]

Klima, M.

Kottke, T.

K. Ataka, T. Kottke, J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. 49, 5416–5424 (2010).
[CrossRef]

Laaser, J. E.

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[CrossRef]

Langhojer, F.

Lee, J.-S.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009).
[CrossRef] [PubMed]

Lee, K. F.

Lee, K.-K.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009).
[CrossRef] [PubMed]

Lepetit, L.

Lhrig, T.

Lim, M.

P. Hamm, M. Lim, R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[CrossRef]

Loparo, J. J.

S. T. Roberts, J. J. Loparo, K. Ramasesha, A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
[CrossRef]

Maksimenka, R.

Manzoni, C.

Middleton, C. T.

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[CrossRef]

C. T. Middleton, A. M. Woys, S. S. Mukherjee, M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods 52, 12–22 (2010).
[CrossRef] [PubMed]

Milkiewicz, J.

Miller, R. J. D.

Mukherjee, S. S.

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[CrossRef]

C. T. Middleton, A. M. Woys, S. S. Mukherjee, M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods 52, 12–22 (2010).
[CrossRef] [PubMed]

Nicodemus, R. A.

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Nuernberger, P.

Oksenhendler, T.

Olivucci, M.

J. Réhault, V. Zanirato, M. Olivucci, J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[CrossRef] [PubMed]

Perakis, F.

F. Perakis, P. Hamm, “Two-dimensional infrared spectroscopy of supercooled water,” J. Phys. Chem. B 115, 5289–5293 (2011).
[CrossRef]

Raine, K.

M. Downs, K. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precision Engineering 1, 85–88 (1979).
[CrossRef]

Ramasesha, K.

S. T. Roberts, J. J. Loparo, K. Ramasesha, A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
[CrossRef]

Réhault, J.

J. Réhault, J. Helbing, “Exploring the polarization degrees of freedom in collinear two-dimensional infrared spectroscopy,” EPJ Web of Conferences 41, 05003 (2013).
[CrossRef]

J. Réhault, J. Helbing, “Angle determination and scattering suppression in polarization-enhanced two-dimensional infrared spectroscopy in the pump-probe geometry,” Opt. Express 20, 21665–21677 (2012).
[CrossRef] [PubMed]

J. Réhault, V. Zanirato, M. Olivucci, J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[CrossRef] [PubMed]

Rhee, H.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009).
[CrossRef] [PubMed]

Roberts, S. T.

S. T. Roberts, J. J. Loparo, K. Ramasesha, A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
[CrossRef]

Schlarb, U.

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of wavelength and composition,” J. Appl. Phys. 73, 3472–3476 (1993).
[CrossRef]

Schwarz, C.

Selig, U.

Shim, S.-H.

S.-H. Shim, M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31, 838–840 (2006).
[CrossRef] [PubMed]

Skoff, D. R.

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[CrossRef]

Small, D. L.

Steinel, T.

T. Steinel, J. B. Asbury, J. Zheng, M. D. Fayer, “Watching hydrogen bonds break: a transient absorption study of water,” J. Phys. Chem. A 108, 10957–10964 (2004).
[CrossRef] [PubMed]

Strasfeld, D. B.

Strzalka, H.

Tokmakoff, A.

Tournois, P.

Woys, A. M.

C. T. Middleton, A. M. Woys, S. S. Mukherjee, M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods 52, 12–22 (2010).
[CrossRef] [PubMed]

Xiong, W.

Zanirato, V.

J. Réhault, V. Zanirato, M. Olivucci, J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[CrossRef] [PubMed]

Zanni, M. T.

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[CrossRef]

C. T. Middleton, A. M. Woys, S. S. Mukherjee, M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods 52, 12–22 (2010).
[CrossRef] [PubMed]

S.-H. Shim, M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

W. Xiong, M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33, 1371–1373 (2008).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31, 838–840 (2006).
[CrossRef] [PubMed]

M. T. Zanni, N.-H. Ge, Y. S. Kim, R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. USA 98, 11265–11270 (2001).
[CrossRef] [PubMed]

M. C. Asplund, M. T. Zanni, R. M. Hochstrasser, “Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes,” Proc. Natl. Acad. Sci. U.S.A. 97, 8219–8224 (2000).
[CrossRef] [PubMed]

P. Hamm, M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
[CrossRef]

Zelmon, D. E.

Zheng, J.

T. Steinel, J. B. Asbury, J. Zheng, M. D. Fayer, “Watching hydrogen bonds break: a transient absorption study of water,” J. Phys. Chem. A 108, 10957–10964 (2004).
[CrossRef] [PubMed]

Angew. Chem.

K. Ataka, T. Kottke, J. Heberle, “Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems,” Angew. Chem. 49, 5416–5424 (2010).
[CrossRef]

Chem. Phys.

D. R. Skoff, J. E. Laaser, S. S. Mukherjee, C. T. Middleton, M. T. Zanni, “Simplified and economical 2D IR spectrometer design using a dual acousto-optic modulator,” Chem. Phys. 422, 8–15 (2013).
[CrossRef]

EPJ Web of Conferences

J. Réhault, J. Helbing, “Exploring the polarization degrees of freedom in collinear two-dimensional infrared spectroscopy,” EPJ Web of Conferences 41, 05003 (2013).
[CrossRef]

J. Appl. Phys.

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of wavelength and composition,” J. Appl. Phys. 73, 3472–3476 (1993).
[CrossRef]

J. Chem. Phys.

J. Réhault, V. Zanirato, M. Olivucci, J. Helbing, “Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy,” J. Chem. Phys. 134, 124516 (2011).
[CrossRef] [PubMed]

V. Cervetto, J. Helbing, J. Bredenbeck, P. Hamm, “Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: An experimental and theoretical comparison,” J. Chem. Phys. 121, 5935–5942 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. A

T. Steinel, J. B. Asbury, J. Zheng, M. D. Fayer, “Watching hydrogen bonds break: a transient absorption study of water,” J. Phys. Chem. A 108, 10957–10964 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. B

F. Perakis, P. Hamm, “Two-dimensional infrared spectroscopy of supercooled water,” J. Phys. Chem. B 115, 5289–5293 (2011).
[CrossRef]

P. Hamm, M. Lim, R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[CrossRef]

Methods

C. T. Middleton, A. M. Woys, S. S. Mukherjee, M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods 52, 12–22 (2010).
[CrossRef] [PubMed]

Nature

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310–313 (2009).
[CrossRef] [PubMed]

Opt. Commun.

S. T. Roberts, J. J. Loparo, K. Ramasesha, A. Tokmakoff, “A fast-scanning Fourier transform 2D IR interferometer,” Opt. Commun. 284, 1062–1066 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

D. Brida, C. Manzoni, G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37, 3027–3029 (2012).
[CrossRef] [PubMed]

R. Maksimenka, P. Nuernberger, K. F. Lee, A. Bonvalet, J. Milkiewicz, C. Barta, M. Klima, T. Oksenhendler, P. Tournois, D. Kaplan, M. Joffre, “Direct mid-infrared femtosecond pulse shaping with a calomel acousto-optic programmable dispersive filter,” Opt. Lett. 35, 3565–3567 (2010).
[CrossRef] [PubMed]

N. Demirdöven, M. Khalil, O. Golonzka, A. Tokmakoff, “Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses” Opt. Lett. 27, 433 (2002).
[CrossRef]

S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett. 31, 838–840 (2006).
[CrossRef] [PubMed]

L. P. DeFlores, R. A. Nicodemus, A. Tokmakoff, “Two-dimensional Fourier transform spectroscopy in the pump-probe geometry,” Opt. Lett. 32, 2966 (2007).
[CrossRef] [PubMed]

W. Xiong, M. T. Zanni, “Signal enhancement and background cancellation in collinear two-dimensional spectroscopies,” Opt. Lett. 33, 1371–1373 (2008).
[CrossRef] [PubMed]

E. H. G. Backus, S. Garrett-Roe, P. Hamm, “Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2665–2667 (2008).
[CrossRef] [PubMed]

U. Selig, F. Langhojer, F. Dimler, T. Lhrig, C. Schwarz, B. Gieseking, T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys.

S.-H. Shim, M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[CrossRef] [PubMed]

Precision Engineering

M. Downs, K. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precision Engineering 1, 85–88 (1979).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

M. C. Asplund, M. T. Zanni, R. M. Hochstrasser, “Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes,” Proc. Natl. Acad. Sci. U.S.A. 97, 8219–8224 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

M. T. Zanni, N.-H. Ge, Y. S. Kim, R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. USA 98, 11265–11270 (2001).
[CrossRef] [PubMed]

Other

P. Hamm, M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
[CrossRef]

M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, 2009).
[CrossRef]

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of the TWINS. Block A introduces a constant negative delay. Block B moves to scan t1. Block C corrects the parallelism and front tilt of the beams. Arrows indicate the orientation of the optical axis in each element. Below each pulse is indicated its polarization. Inset : Path for X and Y-polarized beams inside the TWINS. Angles are exaggerated for clarity.

Fig. 2
Fig. 2

(a) Wedge sequence and pump beam propagation through the wedges. The He-Ne beam co-propagates with the mid-IR beam, through blocks A, B and C (Fig. 1). The wire-grid polarizer is set at 45° relative to X and Y, the polarized reflected part is sent to the electronics to detect the interference between the two pump pulses which is used to phase the data. This polarizer is removed when perpendicular pump pulses are used (see Section 4) (b) He-Ne tracking schemes.

Fig. 3
Fig. 3

(a) Spectral interferometry of the two pump pulses in function of bin number, determined with the He-Ne quadrature detection scheme. (b) Cut of (a) (dashed line) at 2500 cm−1.

Fig. 4
Fig. 4

Set of 2D IR spectra of the OD stretch of 5% HOD in H2O for population times (t2) specified in the upper right corner of each spectrum. (a) All parallel measurement (XXXX) (b) Polarization measurements (YXXY). Spectral diffusion, which is revealed by the tilt of the bleaching signals highlighted by the white dotted line, decays in the sub-picosecond time scale.

Tables (1)

Tables Icon

Table 1 Characteristics of a selection of birefringent materials at 4 μm [20]. GVM: group velocity mismatch between ordinary and extraordinary polarizations.

Metrics