Abstract

To date, all schemes for entanglement distribution needed to send entangled particles or a separable mediating particle among distant participants. Here, we propose a counterfactual protocol for entanglement distribution against the traditional forms, that is, two distant particles can be entangled with no physical particles travel between the two remote participants. We also present an alternative scheme for realizing the counterfactual photonic entangled state distribution using Michelson-type interferometer and self-assembled GaAs/InAs quantum dot embedded in a optical microcavity. The numerical analysis about the effect of experimental imperfections on the performance of the scheme shows that the entanglement distribution may be implementable with high fidelity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef] [PubMed]
  3. C. H. Bennett, S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [CrossRef] [PubMed]
  4. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  5. J. S. Bell, “On the einstein-podolsky-rosen paradox,” Physics 1, 195–200 (1964).
  6. J. F. Clauser, M. A. Home, A. Shimony, R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23, 880–884 (1969).
    [CrossRef]
  7. J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
    [CrossRef]
  8. C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. De Riedmatten, D. Felinto, H. J. Kimble, “Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks,” Science 316, 1316–1320 (2007).
    [CrossRef] [PubMed]
  9. J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
    [CrossRef] [PubMed]
  10. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007).
    [CrossRef] [PubMed]
  11. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).
    [CrossRef] [PubMed]
  12. J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express 17, 11440–11449 (2009).
    [CrossRef] [PubMed]
  13. T. S. Cubitt, F. Verstraete, W. Dür, J. I. Cirac, “Separable States Can Be Used To Distribute Entanglement,” Phys. Rev. Lett. 91, 037902 (2003).
    [CrossRef] [PubMed]
  14. A. Steltsov, H. Kampermann, D. Bruß, “Quantum Cost for Sending Entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
    [CrossRef]
  15. T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, “Quantum Discord Bounds the Amount of Distributed Entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
    [CrossRef] [PubMed]
  16. A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, “Experimental Distribution of Entanglement with Separable Carriers,” Phys. Rev. Lett. 111, 230504 (2013).
    [CrossRef]
  17. C. E. Vollmer, D. Schulze, T. Eberle, V. Handchen, J. Fiurasek, R. Schnabel, “Experimental Entanglement Distribution by Separable States,” Phys. Rev. Lett. 111, 230505 (2013).
    [CrossRef]
  18. C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, “Distributing Entanglement with Separable States,” Phys. Rev. Lett. 111, 230506 (2013).
    [CrossRef]
  19. T.-G. Noh, “Counterfactual Quantum Cryptography,” Phys. Rev. Lett. 103, 230501 (2009).
    [CrossRef]
  20. H. Salih, Z. H. Li, M. Al-Amri, M. S. Zubairy, “Protocol for Direct Counterfactual Quantum Communication,” Phys. Rev. Lett. 110, 170502 (2013).
    [CrossRef] [PubMed]
  21. A. C. Elitzur, L. Vaidman, “Quantum mechanical interaction-free measurements[J]. Foundations of Physics,” Found. Phys. 23, 987–997 (1993).
    [CrossRef]
  22. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M. A. Kasevich, “Interaction-Free Measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
    [CrossRef] [PubMed]
  23. B. Misra, E. C. G. Sudarshan, “The Zenos paradox in quantum theory,” J. Math. Phys. 18, 756 (1977).
    [CrossRef]
  24. P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, A. Zeilinger, “High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
    [CrossRef]
  25. H. Azuma, “Interaction-free generation of entanglement,” Phys. Rev. A 68, 022320 (2003).
    [CrossRef]
  26. O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature (London) 439, 949–952 (2006).
    [CrossRef]
  27. Z. Q. Yin, H. W. Li, W. Chen, Z. F. Han, G. C. Guo, “Security of counterfactual quantum cryptography,” Phy. Rev. A 82, 042335 (2010).
    [CrossRef]
  28. Z. Q. Yin, H. W. Li, Y. Yao, C. M. Zhang, S. Wang, W. Chen, G. C. Guo, Z. F. Han, “Counterfactual quantum cryptography based on weak coherent states,” Phy. Rev. A 86, 022313 (2012).
    [CrossRef]
  29. J. L. Zhang, F. Z. Guo, F. Gao, B. Liu, Q. Y. Wen, “Private database queries based on counterfactual quantum key distribution,” Phys. Rev. A 88, 022334 (2013).
    [CrossRef]
  30. Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
    [CrossRef] [PubMed]
  31. G. Brida, A. Cavanna, I.P. Degiovanni, M. Genovese, P. Traina, “Experimental realization of counterfactual quantum cryptography,” Laser Phys. Lett. 9, 247–252 (2012).
    [CrossRef]
  32. N. Gisin, “Optical communication without photons,” Phys. Rev. A 88, 030301 (2013).
    [CrossRef]
  33. C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
    [CrossRef]
  34. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
    [CrossRef] [PubMed]
  35. C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
    [CrossRef]
  36. H. R. Wei, F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
    [CrossRef] [PubMed]
  37. Q. Chen, M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
    [CrossRef]
  38. Q. Chen, M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
    [CrossRef]
  39. M. A. Hall, J. B. Altepeter, P. Kumar, “Ultrafast Switching of Photonic Entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
    [CrossRef] [PubMed]
  40. P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111, 150501 (2013).
    [CrossRef] [PubMed]
  41. D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
    [CrossRef]
  42. J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
    [CrossRef] [PubMed]
  43. A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262 (2009).
    [CrossRef]
  44. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, “A single-photon server with just one atom,” Nature Phys. 3, 253 (2007).
    [CrossRef]
  45. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
    [CrossRef]
  46. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
    [CrossRef]
  47. C. Emary, X. Xu, D. G. Steel, S. Saikin, L. J. Sham, “Fast Initialization of the Spin State of an Electron in a Quantum Dot in the Voigt Configuration,” Phys. Rev. Lett. 98, 047401 (2007).
    [CrossRef] [PubMed]
  48. D. Kim, S. E. Economou, S. C. Badescu, M. Scheibner, A. S. Bracker, M. Bashkansky, T. L. Reinecke, D. Gammon, “Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule,” Phys. Rev. Lett. 101, 236804 (2008).
    [CrossRef] [PubMed]
  49. C. Emary, L. J. Sham, “Optically controlled single-qubit rotations in self-assembled InAs quantum dots,” J. Phys.: Condens. Matter 19, 056203 (2007).
  50. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
    [CrossRef]
  51. Z. L. Xiang, S. Ashhab, J. Q. You, F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
    [CrossRef]
  52. J. Fischer, D. Loss, “Dealing with Decoherence,” Science 324, 1277 (2009).
    [CrossRef] [PubMed]
  53. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
    [CrossRef] [PubMed]
  54. F. H. L. Koppens, K. C. Nowack, L. M. K. Vandersypen, “Spin Echo of a Single Electron Spin in a Quantum Dot,” Phys. Rev. Lett. 100, 236802 (2008).
    [CrossRef] [PubMed]
  55. S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, Y. Yamamoto, “Ultrafast Optical Spin Echo for Electron Spins in Semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
    [CrossRef] [PubMed]
  56. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
    [CrossRef]
  57. H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200μs,” Nature Phys. 7, 109–113 (2011).
    [CrossRef]
  58. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
    [CrossRef]
  59. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  60. G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F. Piacentini, S. V. Polyakov, I. R. Berchera, “Experimental realization of a low-noise heralded single-photon source,” Opt. Express 19, 1484–1492 (2011).
    [CrossRef] [PubMed]
  61. L. Yang, F. Sun, N. Zhao, X. Li, “Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: Influence of background noise,” Opt. Express 22, 2553–2561 (2014).
    [CrossRef]

2014

2013

H. R. Wei, F. G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013).
[CrossRef] [PubMed]

Z. L. Xiang, S. Ashhab, J. Q. You, F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[CrossRef]

A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, “Experimental Distribution of Entanglement with Separable Carriers,” Phys. Rev. Lett. 111, 230504 (2013).
[CrossRef]

C. E. Vollmer, D. Schulze, T. Eberle, V. Handchen, J. Fiurasek, R. Schnabel, “Experimental Entanglement Distribution by Separable States,” Phys. Rev. Lett. 111, 230505 (2013).
[CrossRef]

C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, “Distributing Entanglement with Separable States,” Phys. Rev. Lett. 111, 230506 (2013).
[CrossRef]

H. Salih, Z. H. Li, M. Al-Amri, M. S. Zubairy, “Protocol for Direct Counterfactual Quantum Communication,” Phys. Rev. Lett. 110, 170502 (2013).
[CrossRef] [PubMed]

J. L. Zhang, F. Z. Guo, F. Gao, B. Liu, Q. Y. Wen, “Private database queries based on counterfactual quantum key distribution,” Phys. Rev. A 88, 022334 (2013).
[CrossRef]

N. Gisin, “Optical communication without photons,” Phys. Rev. A 88, 030301 (2013).
[CrossRef]

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111, 150501 (2013).
[CrossRef] [PubMed]

2012

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

G. Brida, A. Cavanna, I.P. Degiovanni, M. Genovese, P. Traina, “Experimental realization of counterfactual quantum cryptography,” Laser Phys. Lett. 9, 247–252 (2012).
[CrossRef]

A. Steltsov, H. Kampermann, D. Bruß, “Quantum Cost for Sending Entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
[CrossRef]

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, “Quantum Discord Bounds the Amount of Distributed Entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[CrossRef] [PubMed]

Z. Q. Yin, H. W. Li, Y. Yao, C. M. Zhang, S. Wang, W. Chen, G. C. Guo, Z. F. Han, “Counterfactual quantum cryptography based on weak coherent states,” Phy. Rev. A 86, 022313 (2012).
[CrossRef]

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

2011

G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F. Piacentini, S. V. Polyakov, I. R. Berchera, “Experimental realization of a low-noise heralded single-photon source,” Opt. Express 19, 1484–1492 (2011).
[CrossRef] [PubMed]

M. A. Hall, J. B. Altepeter, P. Kumar, “Ultrafast Switching of Photonic Entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef] [PubMed]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200μs,” Nature Phys. 7, 109–113 (2011).
[CrossRef]

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

2010

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Q. Chen, M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[CrossRef]

Z. Q. Yin, H. W. Li, W. Chen, Z. F. Han, G. C. Guo, “Security of counterfactual quantum cryptography,” Phy. Rev. A 82, 042335 (2010).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

2009

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, Y. Yamamoto, “Ultrafast Optical Spin Echo for Electron Spins in Semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

J. Fischer, D. Loss, “Dealing with Decoherence,” Science 324, 1277 (2009).
[CrossRef] [PubMed]

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express 17, 11440–11449 (2009).
[CrossRef] [PubMed]

T.-G. Noh, “Counterfactual Quantum Cryptography,” Phys. Rev. Lett. 103, 230501 (2009).
[CrossRef]

Q. Chen, M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262 (2009).
[CrossRef]

2008

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

D. Kim, S. E. Economou, S. C. Badescu, M. Scheibner, A. S. Bracker, M. Bashkansky, T. L. Reinecke, D. Gammon, “Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule,” Phys. Rev. Lett. 101, 236804 (2008).
[CrossRef] [PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).
[CrossRef] [PubMed]

F. H. L. Koppens, K. C. Nowack, L. M. K. Vandersypen, “Spin Echo of a Single Electron Spin in a Quantum Dot,” Phys. Rev. Lett. 100, 236802 (2008).
[CrossRef] [PubMed]

2007

C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. De Riedmatten, D. Felinto, H. J. Kimble, “Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks,” Science 316, 1316–1320 (2007).
[CrossRef] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15, 13957–13964 (2007).
[CrossRef] [PubMed]

C. Emary, L. J. Sham, “Optically controlled single-qubit rotations in self-assembled InAs quantum dots,” J. Phys.: Condens. Matter 19, 056203 (2007).

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

C. Emary, X. Xu, D. G. Steel, S. Saikin, L. J. Sham, “Fast Initialization of the Spin State of an Electron in a Quantum Dot in the Voigt Configuration,” Phys. Rev. Lett. 98, 047401 (2007).
[CrossRef] [PubMed]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, “A single-photon server with just one atom,” Nature Phys. 3, 253 (2007).
[CrossRef]

2006

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature (London) 439, 949–952 (2006).
[CrossRef]

2005

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
[CrossRef] [PubMed]

2004

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

2003

H. Azuma, “Interaction-free generation of entanglement,” Phys. Rev. A 68, 022320 (2003).
[CrossRef]

T. S. Cubitt, F. Verstraete, W. Dür, J. I. Cirac, “Separable States Can Be Used To Distribute Entanglement,” Phys. Rev. Lett. 91, 037902 (2003).
[CrossRef] [PubMed]

2002

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

1999

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, A. Zeilinger, “High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[CrossRef]

1997

J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M. A. Kasevich, “Interaction-Free Measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

1993

A. C. Elitzur, L. Vaidman, “Quantum mechanical interaction-free measurements[J]. Foundations of Physics,” Found. Phys. 23, 987–997 (1993).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

1992

C. H. Bennett, S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

1977

B. Misra, E. C. G. Sudarshan, “The Zenos paradox in quantum theory,” J. Math. Phys. 18, 756 (1977).
[CrossRef]

1969

J. F. Clauser, M. A. Home, A. Shimony, R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

1964

J. S. Bell, “On the einstein-podolsky-rosen paradox,” Physics 1, 195–200 (1964).

Al-Amri, M.

H. Salih, Z. H. Li, M. Al-Amri, M. S. Zubairy, “Protocol for Direct Counterfactual Quantum Communication,” Phys. Rev. Lett. 110, 170502 (2013).
[CrossRef] [PubMed]

Altepeter, J. B.

M. A. Hall, J. B. Altepeter, P. Kumar, “Ultrafast Switching of Photonic Entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef] [PubMed]

Ashhab, S.

Z. L. Xiang, S. Ashhab, J. Q. You, F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[CrossRef]

Asobe, M.

Awschalom, D. D.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Azuma, H.

H. Azuma, “Interaction-free generation of entanglement,” Phys. Rev. A 68, 022320 (2003).
[CrossRef]

Badescu, S. C.

D. Kim, S. E. Economou, S. C. Badescu, M. Scheibner, A. S. Bracker, M. Bashkansky, T. L. Reinecke, D. Gammon, “Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule,” Phys. Rev. Lett. 101, 236804 (2008).
[CrossRef] [PubMed]

Baek, B.

Barbieri, M.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111, 150501 (2013).
[CrossRef] [PubMed]

Barreiro, J. T.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature (London) 439, 949–952 (2006).
[CrossRef]

Bashkansky, M.

D. Kim, S. E. Economou, S. C. Badescu, M. Scheibner, A. S. Bracker, M. Bashkansky, T. L. Reinecke, D. Gammon, “Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule,” Phys. Rev. Lett. 101, 236804 (2008).
[CrossRef] [PubMed]

Bayer, M.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262 (2009).
[CrossRef]

Bell, J. S.

J. S. Bell, “On the einstein-podolsky-rosen paradox,” Physics 1, 195–200 (1964).

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett, S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

Berchera, I. R.

Berezovsky, J.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Bluhm, H.

H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200μs,” Nature Phys. 7, 109–113 (2011).
[CrossRef]

Bonato, C.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Bouwmeester, D.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Bracker, A. S.

D. Kim, S. E. Economou, S. C. Badescu, M. Scheibner, A. S. Bracker, M. Bashkansky, T. L. Reinecke, D. Gammon, “Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule,” Phys. Rev. Lett. 101, 236804 (2008).
[CrossRef] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Brida, G.

G. Brida, A. Cavanna, I.P. Degiovanni, M. Genovese, P. Traina, “Experimental realization of counterfactual quantum cryptography,” Laser Phys. Lett. 9, 247–252 (2012).
[CrossRef]

G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F. Piacentini, S. V. Polyakov, I. R. Berchera, “Experimental realization of a low-noise heralded single-photon source,” Opt. Express 19, 1484–1492 (2011).
[CrossRef] [PubMed]

Broome, M. A.

A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, “Experimental Distribution of Entanglement with Separable Carriers,” Phys. Rev. Lett. 111, 230504 (2013).
[CrossRef]

Bruß, D.

A. Steltsov, H. Kampermann, D. Bruß, “Quantum Cost for Sending Entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
[CrossRef]

Cai, X. D.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Cao, Y.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Cavanna, A.

G. Brida, A. Cavanna, I.P. Degiovanni, M. Genovese, P. Traina, “Experimental realization of counterfactual quantum cryptography,” Laser Phys. Lett. 9, 247–252 (2012).
[CrossRef]

Chen, K.

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

Chen, Q.

Q. Chen, M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[CrossRef]

Q. Chen, M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

Chen, T. Y.

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

Chen, W.

Z. Q. Yin, H. W. Li, Y. Yao, C. M. Zhang, S. Wang, W. Chen, G. C. Guo, Z. F. Han, “Counterfactual quantum cryptography based on weak coherent states,” Phy. Rev. A 86, 022313 (2012).
[CrossRef]

Z. Q. Yin, H. W. Li, W. Chen, Z. F. Han, G. C. Guo, “Security of counterfactual quantum cryptography,” Phy. Rev. A 82, 042335 (2010).
[CrossRef]

Chen, Y. A.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Chen, Z. B.

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

Chen, Z.-B.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

Chille, V.

C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, “Distributing Entanglement with Separable States,” Phys. Rev. Lett. 111, 230506 (2013).
[CrossRef]

Choi, K. S.

C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. De Riedmatten, D. Felinto, H. J. Kimble, “Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks,” Science 316, 1316–1320 (2007).
[CrossRef] [PubMed]

Chou, C. W.

C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. De Riedmatten, D. Felinto, H. J. Kimble, “Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks,” Science 316, 1316–1320 (2007).
[CrossRef] [PubMed]

Chuan, T. K.

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, “Quantum Discord Bounds the Amount of Distributed Entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[CrossRef] [PubMed]

Chuang, I. L.

M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Cirac, J. I.

T. S. Cubitt, F. Verstraete, W. Dür, J. I. Cirac, “Separable States Can Be Used To Distribute Entanglement,” Phys. Rev. Lett. 91, 037902 (2003).
[CrossRef] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Clark, S. M.

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, Y. Yamamoto, “Ultrafast Optical Spin Echo for Electron Spins in Semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

Clauser, J. F.

J. F. Clauser, M. A. Home, A. Shimony, R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Coldren, L. A.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Cubitt, T. S.

T. S. Cubitt, F. Verstraete, W. Dür, J. I. Cirac, “Separable States Can Be Used To Distribute Entanglement,” Phys. Rev. Lett. 91, 037902 (2003).
[CrossRef] [PubMed]

de Almeida, M.

A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, “Experimental Distribution of Entanglement with Separable Carriers,” Phys. Rev. Lett. 111, 230504 (2013).
[CrossRef]

De Greve, K.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

De Riedmatten, H.

C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. De Riedmatten, D. Felinto, H. J. Kimble, “Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks,” Science 316, 1316–1320 (2007).
[CrossRef] [PubMed]

Degiovanni, I. P.

Degiovanni, I.P.

G. Brida, A. Cavanna, I.P. Degiovanni, M. Genovese, P. Traina, “Experimental realization of counterfactual quantum cryptography,” Laser Phys. Lett. 9, 247–252 (2012).
[CrossRef]

Deng, F. G.

Deng, H.

C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. De Riedmatten, D. Felinto, H. J. Kimble, “Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks,” Science 316, 1316–1320 (2007).
[CrossRef] [PubMed]

Ding, D.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Dür, W.

T. S. Cubitt, F. Verstraete, W. Dür, J. I. Cirac, “Separable States Can Be Used To Distribute Entanglement,” Phys. Rev. Lett. 91, 037902 (2003).
[CrossRef] [PubMed]

Dynes, J. F.

Eberle, T.

C. E. Vollmer, D. Schulze, T. Eberle, V. Handchen, J. Fiurasek, R. Schnabel, “Experimental Entanglement Distribution by Separable States,” Phys. Rev. Lett. 111, 230505 (2013).
[CrossRef]

Economou, S. E.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262 (2009).
[CrossRef]

D. Kim, S. E. Economou, S. C. Badescu, M. Scheibner, A. S. Bracker, M. Bashkansky, T. L. Reinecke, D. Gammon, “Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule,” Phys. Rev. Lett. 101, 236804 (2008).
[CrossRef] [PubMed]

Elitzur, A. C.

A. C. Elitzur, L. Vaidman, “Quantum mechanical interaction-free measurements[J]. Foundations of Physics,” Found. Phys. 23, 987–997 (1993).
[CrossRef]

Emary, C.

C. Emary, X. Xu, D. G. Steel, S. Saikin, L. J. Sham, “Fast Initialization of the Spin State of an Electron in a Quantum Dot in the Voigt Configuration,” Phys. Rev. Lett. 98, 047401 (2007).
[CrossRef] [PubMed]

C. Emary, L. J. Sham, “Optically controlled single-qubit rotations in self-assembled InAs quantum dots,” J. Phys.: Condens. Matter 19, 056203 (2007).

Fedrizzi, A.

A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, “Experimental Distribution of Entanglement with Separable Carriers,” Phys. Rev. Lett. 111, 230504 (2013).
[CrossRef]

Fejer, M. M.

Felinto, D.

C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. De Riedmatten, D. Felinto, H. J. Kimble, “Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks,” Science 316, 1316–1320 (2007).
[CrossRef] [PubMed]

Feng, M.

Q. Chen, M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[CrossRef]

Q. Chen, M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

Fischer, J.

J. Fischer, D. Loss, “Dealing with Decoherence,” Science 324, 1277 (2009).
[CrossRef] [PubMed]

Fiurasek, J.

C. E. Vollmer, D. Schulze, T. Eberle, V. Handchen, J. Fiurasek, R. Schnabel, “Experimental Entanglement Distribution by Separable States,” Phys. Rev. Lett. 111, 230505 (2013).
[CrossRef]

Foletti, S.

H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200μs,” Nature Phys. 7, 109–113 (2011).
[CrossRef]

Forchel, A.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Förtsch, M.

C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, “Distributing Entanglement with Separable States,” Phys. Rev. Lett. 111, 230506 (2013).
[CrossRef]

Friess, B.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

Fu, K.-M. C.

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, Y. Yamamoto, “Ultrafast Optical Spin Echo for Electron Spins in Semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

Gammon, D.

D. Kim, S. E. Economou, S. C. Badescu, M. Scheibner, A. S. Bracker, M. Bashkansky, T. L. Reinecke, D. Gammon, “Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule,” Phys. Rev. Lett. 101, 236804 (2008).
[CrossRef] [PubMed]

Gao, F.

J. L. Zhang, F. Z. Guo, F. Gao, B. Liu, Q. Y. Wen, “Private database queries based on counterfactual quantum key distribution,” Phys. Rev. A 88, 022334 (2013).
[CrossRef]

Genovese, M.

G. Brida, A. Cavanna, I.P. Degiovanni, M. Genovese, P. Traina, “Experimental realization of counterfactual quantum cryptography,” Laser Phys. Lett. 9, 247–252 (2012).
[CrossRef]

G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F. Piacentini, S. V. Polyakov, I. R. Berchera, “Experimental realization of a low-noise heralded single-photon source,” Opt. Express 19, 1484–1492 (2011).
[CrossRef] [PubMed]

Gillett, G. G.

A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, “Experimental Distribution of Entanglement with Separable Carriers,” Phys. Rev. Lett. 111, 230504 (2013).
[CrossRef]

Gisin, N.

N. Gisin, “Optical communication without photons,” Phys. Rev. A 88, 030301 (2013).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Gossard, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
[CrossRef] [PubMed]

Greilich, A.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262 (2009).
[CrossRef]

Gudat, J.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Guo, F. Z.

J. L. Zhang, F. Z. Guo, F. Gao, B. Liu, Q. Y. Wen, “Private database queries based on counterfactual quantum key distribution,” Phys. Rev. A 88, 022334 (2013).
[CrossRef]

Guo, G. C.

Z. Q. Yin, H. W. Li, Y. Yao, C. M. Zhang, S. Wang, W. Chen, G. C. Guo, Z. F. Han, “Counterfactual quantum cryptography based on weak coherent states,” Phy. Rev. A 86, 022313 (2012).
[CrossRef]

Z. Q. Yin, H. W. Li, W. Chen, Z. F. Han, G. C. Guo, “Security of counterfactual quantum cryptography,” Phy. Rev. A 82, 042335 (2010).
[CrossRef]

Hall, M. A.

M. A. Hall, J. B. Altepeter, P. Kumar, “Ultrafast Switching of Photonic Entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef] [PubMed]

Han, Z. F.

Z. Q. Yin, H. W. Li, Y. Yao, C. M. Zhang, S. Wang, W. Chen, G. C. Guo, Z. F. Han, “Counterfactual quantum cryptography based on weak coherent states,” Phy. Rev. A 86, 022313 (2012).
[CrossRef]

Z. Q. Yin, H. W. Li, W. Chen, Z. F. Han, G. C. Guo, “Security of counterfactual quantum cryptography,” Phy. Rev. A 82, 042335 (2010).
[CrossRef]

Handchen, V.

C. E. Vollmer, D. Schulze, T. Eberle, V. Handchen, J. Fiurasek, R. Schnabel, “Experimental Entanglement Distribution by Separable States,” Phys. Rev. Lett. 111, 230505 (2013).
[CrossRef]

Hanson, M. P.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
[CrossRef] [PubMed]

Harada, K.

Haupt, F.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Herzog, T.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M. A. Kasevich, “Interaction-Free Measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

Hijlkema, M.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, “A single-photon server with just one atom,” Nature Phys. 3, 253 (2007).
[CrossRef]

Höfling, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Holt, R. A.

J. F. Clauser, M. A. Home, A. Shimony, R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Home, M. A.

J. F. Clauser, M. A. Home, A. Shimony, R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Honjo, T.

Hosten, O.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature (London) 439, 949–952 (2006).
[CrossRef]

Hu, C. Y.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

Huang, Y. M.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Humphreys, P. C.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111, 150501 (2013).
[CrossRef] [PubMed]

Inoue, K.

Jia, J. J.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Jiang, Y.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Jin, X. M.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111, 150501 (2013).
[CrossRef] [PubMed]

Johnson, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
[CrossRef] [PubMed]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Ju, L.

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

Kamada, H.

Kamp, M.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Kampermann, H.

A. Steltsov, H. Kampermann, D. Bruß, “Quantum Cost for Sending Entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
[CrossRef]

Kasevich, M. A.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M. A. Kasevich, “Interaction-Free Measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Kim, D.

D. Kim, S. E. Economou, S. C. Badescu, M. Scheibner, A. S. Bracker, M. Bashkansky, T. L. Reinecke, D. Gammon, “Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule,” Phys. Rev. Lett. 101, 236804 (2008).
[CrossRef] [PubMed]

Kimble, H. J.

C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. De Riedmatten, D. Felinto, H. J. Kimble, “Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks,” Science 316, 1316–1320 (2007).
[CrossRef] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Kolthammer, W. S.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111, 150501 (2013).
[CrossRef] [PubMed]

Koppens, F. H. L.

F. H. L. Koppens, K. C. Nowack, L. M. K. Vandersypen, “Spin Echo of a Single Electron Spin in a Quantum Dot,” Phys. Rev. Lett. 100, 236802 (2008).
[CrossRef] [PubMed]

Korger, J.

C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, “Distributing Entanglement with Separable States,” Phys. Rev. Lett. 111, 230506 (2013).
[CrossRef]

Korolkova, N.

C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, “Distributing Entanglement with Separable States,” Phys. Rev. Lett. 111, 230506 (2013).
[CrossRef]

Kuhn, A.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, “A single-photon server with just one atom,” Nature Phys. 3, 253 (2007).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Kumar, P.

M. A. Hall, J. B. Altepeter, P. Kumar, “Ultrafast Switching of Photonic Entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef] [PubMed]

Kwiat, P.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M. A. Kasevich, “Interaction-Free Measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

Kwiat, P. G.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature (London) 439, 949–952 (2006).
[CrossRef]

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, A. Zeilinger, “High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Ladd, T. D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, Y. Yamamoto, “Ultrafast Optical Spin Echo for Electron Spins in Semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

Laird, E. A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
[CrossRef] [PubMed]

Langrock, C.

Laurat, J.

C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. De Riedmatten, D. Felinto, H. J. Kimble, “Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks,” Science 316, 1316–1320 (2007).
[CrossRef] [PubMed]

Leuchs, G.

C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, “Distributing Entanglement with Separable States,” Phys. Rev. Lett. 111, 230506 (2013).
[CrossRef]

Li, H. W.

Z. Q. Yin, H. W. Li, Y. Yao, C. M. Zhang, S. Wang, W. Chen, G. C. Guo, Z. F. Han, “Counterfactual quantum cryptography based on weak coherent states,” Phy. Rev. A 86, 022313 (2012).
[CrossRef]

Z. Q. Yin, H. W. Li, W. Chen, Z. F. Han, G. C. Guo, “Security of counterfactual quantum cryptography,” Phy. Rev. A 82, 042335 (2010).
[CrossRef]

Li, X.

Li, Z. H.

H. Salih, Z. H. Li, M. Al-Amri, M. S. Zubairy, “Protocol for Direct Counterfactual Quantum Communication,” Phys. Rev. Lett. 110, 170502 (2013).
[CrossRef] [PubMed]

Liang, X. L.

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

Liao, S. K.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Liu, B.

J. L. Zhang, F. Z. Guo, F. Gao, B. Liu, Q. Y. Wen, “Private database queries based on counterfactual quantum key distribution,” Phys. Rev. A 88, 022334 (2013).
[CrossRef]

Liu, C.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

Loffler, A.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Löffler, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Loss, D.

J. Fischer, D. Loss, “Dealing with Decoherence,” Science 324, 1277 (2009).
[CrossRef] [PubMed]

Lu, C.-Y.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

Lu, H.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Lukin, M. D.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
[CrossRef] [PubMed]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Mahalu, D.

H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200μs,” Nature Phys. 7, 109–113 (2011).
[CrossRef]

Maillard, J.

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, “Quantum Discord Bounds the Amount of Distributed Entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[CrossRef] [PubMed]

Marcus, C. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
[CrossRef] [PubMed]

Marquardt, C.

C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, “Distributing Entanglement with Separable States,” Phys. Rev. Lett. 111, 230506 (2013).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

McMahon, P. L.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

Metcalf, B. J.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111, 150501 (2013).
[CrossRef] [PubMed]

Migdall, A.

Mikkelsen, M. H.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Misra, B.

B. Misra, E. C. G. Sudarshan, “The Zenos paradox in quantum theory,” J. Math. Phys. 18, 756 (1977).
[CrossRef]

Mišta, L.

C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, “Distributing Entanglement with Separable States,” Phys. Rev. Lett. 111, 230506 (2013).
[CrossRef]

Mitchell, J. R.

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, A. Zeilinger, “High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[CrossRef]

Modi, K.

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, “Quantum Discord Bounds the Amount of Distributed Entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[CrossRef] [PubMed]

Moore, M.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111, 150501 (2013).
[CrossRef] [PubMed]

Munro, W. J.

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

Nairz, O.

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, A. Zeilinger, “High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[CrossRef]

Nam, S. W.

Neder, I.

H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200μs,” Nature Phys. 7, 109–113 (2011).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Nishida, Y.

Noh, T.-G.

T.-G. Noh, “Counterfactual Quantum Cryptography,” Phys. Rev. Lett. 103, 230501 (2009).
[CrossRef]

Nori, F.

Z. L. Xiang, S. Ashhab, J. Q. You, F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[CrossRef]

Nowack, K. C.

F. H. L. Koppens, K. C. Nowack, L. M. K. Vandersypen, “Spin Echo of a Single Electron Spin in a Quantum Dot,” Phys. Rev. Lett. 100, 236802 (2008).
[CrossRef] [PubMed]

O’Brien, J. L.

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

Oemrawsingh, S. S. R.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Oulton, R.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Pan, G. S.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Pan, J. W.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

Pan, J.-W.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

Paterek, T.

A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, “Experimental Distribution of Entanglement with Separable Carriers,” Phys. Rev. Lett. 111, 230504 (2013).
[CrossRef]

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, “Quantum Discord Bounds the Amount of Distributed Entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[CrossRef] [PubMed]

Paternostro, M.

A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, “Experimental Distribution of Entanglement with Separable Carriers,” Phys. Rev. Lett. 111, 230504 (2013).
[CrossRef]

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, “Quantum Discord Bounds the Amount of Distributed Entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[CrossRef] [PubMed]

Peng, C. Z.

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Peters, N. A.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature (London) 439, 949–952 (2006).
[CrossRef]

Petta, J. R.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
[CrossRef] [PubMed]

Peuntinger, C.

C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, “Distributing Entanglement with Separable States,” Phys. Rev. Lett. 111, 230506 (2013).
[CrossRef]

Piacentini, F.

Piani, M.

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, “Quantum Discord Bounds the Amount of Distributed Entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[CrossRef] [PubMed]

Polyakov, S. V.

Press, D.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

Rakher, M. T.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature (London) 439, 949–952 (2006).
[CrossRef]

Rarity, J. G.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

Reinecke, T. L.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262 (2009).
[CrossRef]

D. Kim, S. E. Economou, S. C. Badescu, M. Scheibner, A. S. Bracker, M. Bashkansky, T. L. Reinecke, D. Gammon, “Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule,” Phys. Rev. Lett. 101, 236804 (2008).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Reitzenstein, S.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Rempe, G.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, “A single-photon server with just one atom,” Nature Phys. 3, 253 (2007).
[CrossRef]

Ren, J. G.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Reuter, D.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262 (2009).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Rudner, M.

H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200μs,” Nature Phys. 7, 109–113 (2011).
[CrossRef]

Saikin, S.

C. Emary, X. Xu, D. G. Steel, S. Saikin, L. J. Sham, “Fast Initialization of the Spin State of an Electron in a Quantum Dot in the Voigt Configuration,” Phys. Rev. Lett. 98, 047401 (2007).
[CrossRef] [PubMed]

Salih, H.

H. Salih, Z. H. Li, M. Al-Amri, M. S. Zubairy, “Protocol for Direct Counterfactual Quantum Communication,” Phys. Rev. Lett. 110, 170502 (2013).
[CrossRef] [PubMed]

Scheibner, M.

D. Kim, S. E. Economou, S. C. Badescu, M. Scheibner, A. S. Bracker, M. Bashkansky, T. L. Reinecke, D. Gammon, “Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule,” Phys. Rev. Lett. 101, 236804 (2008).
[CrossRef] [PubMed]

Schnabel, R.

C. E. Vollmer, D. Schulze, T. Eberle, V. Handchen, J. Fiurasek, R. Schnabel, “Experimental Entanglement Distribution by Separable States,” Phys. Rev. Lett. 111, 230505 (2013).
[CrossRef]

Schneider, C.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Schulze, D.

C. E. Vollmer, D. Schulze, T. Eberle, V. Handchen, J. Fiurasek, R. Schnabel, “Experimental Entanglement Distribution by Separable States,” Phys. Rev. Lett. 111, 230505 (2013).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Sham, L. J.

C. Emary, L. J. Sham, “Optically controlled single-qubit rotations in self-assembled InAs quantum dots,” J. Phys.: Condens. Matter 19, 056203 (2007).

C. Emary, X. Xu, D. G. Steel, S. Saikin, L. J. Sham, “Fast Initialization of the Spin State of an Electron in a Quantum Dot in the Voigt Configuration,” Phys. Rev. Lett. 98, 047401 (2007).
[CrossRef] [PubMed]

Sharpe, A. W.

Shen Tu, G. L.

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

Shields, A. J.

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shimony, A.

J. F. Clauser, M. A. Home, A. Shimony, R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

Spatzek, S.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262 (2009).
[CrossRef]

Specht, H. P.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, “A single-photon server with just one atom,” Nature Phys. 3, 253 (2007).
[CrossRef]

Spring, J. B.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111, 150501 (2013).
[CrossRef] [PubMed]

Stanley, C.

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, Y. Yamamoto, “Ultrafast Optical Spin Echo for Electron Spins in Semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

Steel, D. G.

C. Emary, X. Xu, D. G. Steel, S. Saikin, L. J. Sham, “Fast Initialization of the Spin State of an Electron in a Quantum Dot in the Voigt Configuration,” Phys. Rev. Lett. 98, 047401 (2007).
[CrossRef] [PubMed]

Steltsov, A.

A. Steltsov, H. Kampermann, D. Bruß, “Quantum Cost for Sending Entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
[CrossRef]

Stoltz, N. G.

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Strauß, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Sudarshan, E. C. G.

B. Misra, E. C. G. Sudarshan, “The Zenos paradox in quantum theory,” J. Math. Phys. 18, 756 (1977).
[CrossRef]

Sun, F.

Tadanaga, O.

Takesue, H.

Tang, S. B.

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

Taylor, J. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
[CrossRef] [PubMed]

Thijssen, A. C. T.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Traina, P.

G. Brida, A. Cavanna, I.P. Degiovanni, M. Genovese, P. Traina, “Experimental realization of counterfactual quantum cryptography,” Laser Phys. Lett. 9, 247–252 (2012).
[CrossRef]

Umansky, V.

H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200μs,” Nature Phys. 7, 109–113 (2011).
[CrossRef]

Vaidman, L.

A. C. Elitzur, L. Vaidman, “Quantum mechanical interaction-free measurements[J]. Foundations of Physics,” Found. Phys. 23, 987–997 (1993).
[CrossRef]

van Exter, M. P.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

Vandersypen, L. M. K.

F. H. L. Koppens, K. C. Nowack, L. M. K. Vandersypen, “Spin Echo of a Single Electron Spin in a Quantum Dot,” Phys. Rev. Lett. 100, 236802 (2008).
[CrossRef] [PubMed]

Verstraete, F.

T. S. Cubitt, F. Verstraete, W. Dür, J. I. Cirac, “Separable States Can Be Used To Distribute Entanglement,” Phys. Rev. Lett. 91, 037902 (2003).
[CrossRef] [PubMed]

Vollmer, C. E.

C. E. Vollmer, D. Schulze, T. Eberle, V. Handchen, J. Fiurasek, R. Schnabel, “Experimental Entanglement Distribution by Separable States,” Phys. Rev. Lett. 111, 230505 (2013).
[CrossRef]

Walmsley, I. A.

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111, 150501 (2013).
[CrossRef] [PubMed]

Wang, J. Y.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Wang, S.

Z. Q. Yin, H. W. Li, Y. Yao, C. M. Zhang, S. Wang, W. Chen, G. C. Guo, Z. F. Han, “Counterfactual quantum cryptography based on weak coherent states,” Phy. Rev. A 86, 022313 (2012).
[CrossRef]

Weber, B.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, “A single-photon server with just one atom,” Nature Phys. 3, 253 (2007).
[CrossRef]

Webster, S. C.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, “A single-photon server with just one atom,” Nature Phys. 3, 253 (2007).
[CrossRef]

Wei, H. R.

Weihs, G.

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, A. Zeilinger, “High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[CrossRef]

Weinfurter, H.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, A. Zeilinger, “High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M. A. Kasevich, “Interaction-Free Measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

Wen, Q. Y.

J. L. Zhang, F. Z. Guo, F. Gao, B. Liu, Q. Y. Wen, “Private database queries based on counterfactual quantum key distribution,” Phys. Rev. A 88, 022334 (2013).
[CrossRef]

White, A. G.

A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, “Experimental Distribution of Entanglement with Separable Carriers,” Phys. Rev. Lett. 111, 230504 (2013).
[CrossRef]

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, A. Zeilinger, “High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[CrossRef]

Wieck, A. D.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262 (2009).
[CrossRef]

Wiesner, S. J.

C. H. Bennett, S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

Worschech, L.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Wu, Y. P.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Xiang, Z. L.

Z. L. Xiang, S. Ashhab, J. Q. You, F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[CrossRef]

Xie, X.

Xu, P.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Xu, X.

C. Emary, X. Xu, D. G. Steel, S. Saikin, L. J. Sham, “Fast Initialization of the Spin State of an Electron in a Quantum Dot in the Voigt Configuration,” Phys. Rev. Lett. 98, 047401 (2007).
[CrossRef] [PubMed]

Yacoby, A.

H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200μs,” Nature Phys. 7, 109–113 (2011).
[CrossRef]

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
[CrossRef] [PubMed]

Yakovlev, D. R.

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262 (2009).
[CrossRef]

Yamamoto, Y.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, Y. Yamamoto, “Ultrafast Optical Spin Echo for Electron Spins in Semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).
[CrossRef] [PubMed]

Yang, L.

Yao, Y.

Z. Q. Yin, H. W. Li, Y. Yao, C. M. Zhang, S. Wang, W. Chen, G. C. Guo, Z. F. Han, “Counterfactual quantum cryptography based on weak coherent states,” Phy. Rev. A 86, 022313 (2012).
[CrossRef]

Yin, H.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Yin, J.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Yin, Z. Q.

Z. Q. Yin, H. W. Li, Y. Yao, C. M. Zhang, S. Wang, W. Chen, G. C. Guo, Z. F. Han, “Counterfactual quantum cryptography based on weak coherent states,” Phy. Rev. A 86, 022313 (2012).
[CrossRef]

Z. Q. Yin, H. W. Li, W. Chen, Z. F. Han, G. C. Guo, “Security of counterfactual quantum cryptography,” Phy. Rev. A 82, 042335 (2010).
[CrossRef]

Yong, H. L.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

You, J. Q.

Z. L. Xiang, S. Ashhab, J. Q. You, F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[CrossRef]

Young, A. B.

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Yuan, Z. L.

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zeilinger, A.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, A. Zeilinger, “High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M. A. Kasevich, “Interaction-Free Measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

Zhang, B. Y.

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

Zhang, C. M.

Z. Q. Yin, H. W. Li, Y. Yao, C. M. Zhang, S. Wang, W. Chen, G. C. Guo, Z. F. Han, “Counterfactual quantum cryptography based on weak coherent states,” Phy. Rev. A 86, 022313 (2012).
[CrossRef]

Zhang, J. L.

J. L. Zhang, F. Z. Guo, F. Gao, B. Liu, Q. Y. Wen, “Private database queries based on counterfactual quantum key distribution,” Phys. Rev. A 88, 022334 (2013).
[CrossRef]

Zhang, Q.

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, Y. Yamamoto, “Ultrafast Optical Spin Echo for Electron Spins in Semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting singlephoton detectors,” Opt. Express 16, 5776–5781 (2008).
[CrossRef] [PubMed]

Zhao, N.

Zhou, F.

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Zhou, L.

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Zubairy, M. S.

H. Salih, Z. H. Li, M. Al-Amri, M. S. Zubairy, “Protocol for Direct Counterfactual Quantum Communication,” Phys. Rev. Lett. 110, 170502 (2013).
[CrossRef] [PubMed]

Zukowski, M.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

Zuppardo, M.

A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, “Experimental Distribution of Entanglement with Separable Carriers,” Phys. Rev. Lett. 111, 230504 (2013).
[CrossRef]

Appl. Phys. Lett.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Found. Phys.

A. C. Elitzur, L. Vaidman, “Quantum mechanical interaction-free measurements[J]. Foundations of Physics,” Found. Phys. 23, 987–997 (1993).
[CrossRef]

J. Math. Phys.

B. Misra, E. C. G. Sudarshan, “The Zenos paradox in quantum theory,” J. Math. Phys. 18, 756 (1977).
[CrossRef]

J. Phys.: Condens. Matter

C. Emary, L. J. Sham, “Optically controlled single-qubit rotations in self-assembled InAs quantum dots,” J. Phys.: Condens. Matter 19, 056203 (2007).

Laser Phys. Lett.

G. Brida, A. Cavanna, I.P. Degiovanni, M. Genovese, P. Traina, “Experimental realization of counterfactual quantum cryptography,” Laser Phys. Lett. 9, 247–252 (2012).
[CrossRef]

Nature

J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[CrossRef] [PubMed]

Nature (London)

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London) 432, 197–200 (2004).
[CrossRef]

D. Press, T. D. Ladd, B. Y. Zhang, Y. Yamamoto, “Complete quantum control of a single quantum dot spin using ultrafast optical pulses,” Nature (London) 456, 218–221 (2008).
[CrossRef]

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, P. G. Kwiat, “Counterfactual quantum computation through quantum interrogation,” Nature (London) 439, 949–952 (2006).
[CrossRef]

Nature Photon.

D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nature Photon. 4, 367–370 (2010).
[CrossRef]

Nature Phys.

H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, A. Yacoby, “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200μs,” Nature Phys. 7, 109–113 (2011).
[CrossRef]

A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, M. Bayer, “Ultrafast optical rotations of electron spins in quantum dots,” Nature Phys. 5, 262 (2009).
[CrossRef]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, “A single-photon server with just one atom,” Nature Phys. 3, 253 (2007).
[CrossRef]

Opt. Express

Phy. Rev. A

Z. Q. Yin, H. W. Li, W. Chen, Z. F. Han, G. C. Guo, “Security of counterfactual quantum cryptography,” Phy. Rev. A 82, 042335 (2010).
[CrossRef]

Z. Q. Yin, H. W. Li, Y. Yao, C. M. Zhang, S. Wang, W. Chen, G. C. Guo, Z. F. Han, “Counterfactual quantum cryptography based on weak coherent states,” Phy. Rev. A 86, 022313 (2012).
[CrossRef]

Phys. Rev. A

J. L. Zhang, F. Z. Guo, F. Gao, B. Liu, Q. Y. Wen, “Private database queries based on counterfactual quantum key distribution,” Phys. Rev. A 88, 022334 (2013).
[CrossRef]

H. Azuma, “Interaction-free generation of entanglement,” Phys. Rev. A 68, 022320 (2003).
[CrossRef]

N. Gisin, “Optical communication without photons,” Phys. Rev. A 88, 030301 (2013).
[CrossRef]

Q. Chen, M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

Q. Chen, M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[CrossRef]

A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011).
[CrossRef]

Phys. Rev. B

C. Y. Hu, W. J. Munro, J. L. O’Brien, J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[CrossRef]

C. Y. Hu, J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011).
[CrossRef]

Phys. Rev. Lett.

C. Emary, X. Xu, D. G. Steel, S. Saikin, L. J. Sham, “Fast Initialization of the Spin State of an Electron in a Quantum Dot in the Voigt Configuration,” Phys. Rev. Lett. 98, 047401 (2007).
[CrossRef] [PubMed]

D. Kim, S. E. Economou, S. C. Badescu, M. Scheibner, A. S. Bracker, M. Bashkansky, T. L. Reinecke, D. Gammon, “Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule,” Phys. Rev. Lett. 101, 236804 (2008).
[CrossRef] [PubMed]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[CrossRef] [PubMed]

M. A. Hall, J. B. Altepeter, P. Kumar, “Ultrafast Switching of Photonic Entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[CrossRef] [PubMed]

P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X. M. Jin, M. Barbieri, W. S. Kolthammer, I. A. Walmsley, “Linear Optical Quantum Computing in a Single Spatial Mode,” Phys. Rev. Lett. 111, 150501 (2013).
[CrossRef] [PubMed]

Y. Liu, L. Ju, X. L. Liang, S. B. Tang, G. L. Shen Tu, L. Zhou, C. Z. Peng, K. Chen, T. Y. Chen, Z. B. Chen, J. W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication,” Phys. Rev. Lett. 109, 030501 (2012).
[CrossRef] [PubMed]

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, A. Zeilinger, “High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[CrossRef]

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M. A. Kasevich, “Interaction-Free Measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

T. S. Cubitt, F. Verstraete, W. Dür, J. I. Cirac, “Separable States Can Be Used To Distribute Entanglement,” Phys. Rev. Lett. 91, 037902 (2003).
[CrossRef] [PubMed]

A. Steltsov, H. Kampermann, D. Bruß, “Quantum Cost for Sending Entanglement,” Phys. Rev. Lett. 108, 250501 (2012).
[CrossRef]

T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, “Quantum Discord Bounds the Amount of Distributed Entanglement,” Phys. Rev. Lett. 109, 070501 (2012).
[CrossRef] [PubMed]

A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, “Experimental Distribution of Entanglement with Separable Carriers,” Phys. Rev. Lett. 111, 230504 (2013).
[CrossRef]

C. E. Vollmer, D. Schulze, T. Eberle, V. Handchen, J. Fiurasek, R. Schnabel, “Experimental Entanglement Distribution by Separable States,” Phys. Rev. Lett. 111, 230505 (2013).
[CrossRef]

C. Peuntinger, V. Chille, L. Mišta, N. Korolkova, M. Förtsch, J. Korger, C. Marquardt, G. Leuchs, “Distributing Entanglement with Separable States,” Phys. Rev. Lett. 111, 230506 (2013).
[CrossRef]

T.-G. Noh, “Counterfactual Quantum Cryptography,” Phys. Rev. Lett. 103, 230501 (2009).
[CrossRef]

H. Salih, Z. H. Li, M. Al-Amri, M. S. Zubairy, “Protocol for Direct Counterfactual Quantum Communication,” Phys. Rev. Lett. 110, 170502 (2013).
[CrossRef] [PubMed]

F. H. L. Koppens, K. C. Nowack, L. M. K. Vandersypen, “Spin Echo of a Single Electron Spin in a Quantum Dot,” Phys. Rev. Lett. 100, 236802 (2008).
[CrossRef] [PubMed]

S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, Y. Yamamoto, “Ultrafast Optical Spin Echo for Electron Spins in Semiconductors,” Phys. Rev. Lett. 102, 247601 (2009).
[CrossRef] [PubMed]

J. F. Clauser, M. A. Home, A. Shimony, R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett, S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef] [PubMed]

Physics

J. S. Bell, “On the einstein-podolsky-rosen paradox,” Physics 1, 195–200 (1964).

Rev. Mod. Phys.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[CrossRef]

Z. L. Xiang, S. Ashhab, J. Q. You, F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[CrossRef]

Science

J. Fischer, D. Loss, “Dealing with Decoherence,” Science 324, 1277 (2009).
[CrossRef] [PubMed]

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots,” Science 309, 2180 (2005).
[CrossRef] [PubMed]

C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. De Riedmatten, D. Felinto, H. J. Kimble, “Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks,” Science 316, 1316–1320 (2007).
[CrossRef] [PubMed]

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, “Picosecond coherent optical manipulation of a single electron spin in a quantum dot,” Science 320, 349–352 (2008).
[CrossRef] [PubMed]

Other

M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The quantum version of Kwiat et al.’s interaction-free measurement interferometer. (b) The chained nested Mach-Zehnder type interferometer for counterfactual entanglement distribution. The interferometer in (a) is inserted one arm of a outer interferometer. Alice, Bob, and Charlie locate different places, and the wathet strip T1(2) denotes the transmission channel between Charlie and Alice (Bob). The red (blue) lines is the optical pathes of the nested interferometer between Charlie and Alice (Bob). BSo(i): the beam splitter in outer (inner) interferometer. M: normal mirror. AO: absorption object in a quantum superposition state of absence and presence. Da(b): conventional photon detector. ai and bi (i = 1, 2, 3) describe the different spatial pathes of the two nested interferometers, respectively.

Fig. 2
Fig. 2

The parameters x M 2, y M 2, yMzM and z M 2 in Eq. (12) versus the different values of N and M. (a) x M 2 approaches 1 with the increase of M and doesn’t change with N. (b) y M 2 is close to zero, (c) yMzM is also close to zero, (d) z M 2 is close to 1 for large N and appropriate M.

Fig. 3
Fig. 3

(a) Relevant energy levels and optical selection rules for the optical transition of negatively charged exciton X. The superscript arrows of the photon states indicates their propagation direction along or against the z axis. (b) Quantum version of the absorption object for right-circularly polarized photons |R〉. c-PBS denotes the polarizing beam splitter which transmits the right circularly polarized photon |R〉 and reflects the left circularly polarized photon |L〉. D: conventional photon detector.

Fig. 4
Fig. 4

The nested Michelson interferometers used to implement counterfactual entanglement distribution. Ck and Mk (k = 1, 2, 3 · ··) are optical circulator and normal mirror, respectively. SMo(i) and SPRo(i) are switchable mirror and switchable polarization rotator in outer (inner) cycles. c-PBS: polarizing beam splitter in the circular basis. Da,b,c: conventional photon detector. PS is the phase shifter used to perform the transformation |R〉 ↔ −|R〉. Optical delay (ODo(i)) is used to match the optical path lengthes of the different paths of the outer (inner) interferometer. Charlie chooses to connect with Alice or Bob by using switch K.

Fig. 5
Fig. 5

The fidelity of counterfactual entanglement distribution versus different values of outer and inner cycles M and N.

Fig. 6
Fig. 6

The fidelity of counterfactual entanglement distribution versus the error coefficient s of the switchable polarization rotators.

Fig. 7
Fig. 7

The fidelity of counterfactual entanglement distribution for the case N = 500 and M = 60 versus the side leakage rate κs and the normalized coupling strength g/κ. Here we have set γ = 0.1κ, which is experimentally achievable.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

| φ 0 1 2 ( cos θ | 0 p + sin θ | 1 p ) ( | 0 o + | 1 o ) .
| φ 1 = 1 2 [ ( cos θ | 0 p | 1 o + ( cos θ | 0 p + sin θ | 1 p ) | 0 o ) ] .
| φ N = 1 2 [ ( cos N θ | 0 p | 1 o ) + ( cos N θ | 0 p + sin N θ | 1 p ) | 0 o ] = 1 2 ( cos N θ | 0 p | 1 o + | 1 p | 0 o ) ,
| ϕ 0 1 2 ( cos ϑ | 1 a 1 | 0 a 2 | 0 a 3 + sin ϑ | 0 a 1 | 1 a 2 | 0 a 3 ) ( | 0 o + | 1 o ) .
| ϕ 0 1 2 [ cos ϑ | 1 a 1 | 0 a 2 | 0 a 3 ( | 0 o + | 1 o ) + sin ϑ | 0 a 1 ( cos N θ | 1 a 2 | 0 a 3 | 1 o + | 0 a 2 | 1 a 3 | 0 o ) ] .
| ϕ 1 = 1 2 [ cos ϑ | 1 a 1 | 0 a 2 | 0 a 3 ( | 0 o + | 1 o ) + sin ϑ cos N θ | 0 a 1 | 1 a 2 | 0 a 3 | 1 o ] .
| ϕ m = 1 2 ( x m | 1 a 1 | 0 a 2 | 0 a 3 | 0 o + y m | 1 a 1 | 0 a 2 | 0 a 3 | 1 o + z m | 0 a 1 | 1 a 2 | 0 a 3 | 1 o ) ,
x m = x m 1 cos ϑ , y m = y m 1 cos ϑ z m 1 sin ϑ , z m = ( y m 1 sin ϑ + z m 1 cos ϑ ) cos N θ ,
| ϕ M = 1 2 ( x M | 0 a | 0 o + y M | 0 a | 1 o + z M | 1 a | 1 o ) .
| ψ 0 = 1 2 ( | α a | 0 o + | β a | 1 o ) | 1 b 1 | 0 b 2 | 0 b 3 .
| ψ m = 1 2 ( x m | α a | 0 b | 0 o + y m | β a | 0 b | 1 o + z m | β a | 1 b | 1 o ) ,
| ψ M = 1 2 ( x M 2 | 0 a | 0 b | 0 o + y M 2 | 0 a | 0 b | 1 o + y M z M | 1 a | 0 b | 1 o + y M z M | 0 a | 1 b | 1 o + z M 2 | 1 a | 1 b | 1 o ) .
| ψ M 1 2 [ ( | 0 a | 0 b + | 1 a | 1 b ) | 0 o + ( | 0 a | 0 b | 1 a | 1 b ) | 1 o ] .
| R , | L , , | L , | L , , | R , | R , , | L , | R , , | R , | R , , | L , | R , , | R , | L , , | L , | L , ,
| Ψ M = 1 2 ( x M 2 | R a | R b | c + y M 2 | R a | R b | c y M z M | L a | R b | c y M z M | R a | L b | c + z M 2 | L a | L b | c ) ,
r ( ω ) = [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ s 2 ] + g 2 [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ + κ s 2 ] + g 2 , t ( ω ) = κ [ i ( ω X ω ) + γ 2 ] [ i ( ω X ω ) + γ 2 ] [ i ( ω c ω ) + κ + κ s 2 ] + g 2 ,
r 0 ( ω ) = [ i ( ω 0 ω ) + κ s 2 ] [ i ( ω 0 ω ) + κ + κ s 2 ] , t 0 ( ω ) = κ [ [ i ( ω c ω ) + κ + κ s 2 ] .
| R , | r ( ω ) | | L , + | t ( ω ) | | R , , | R , | t 0 ( ω ) | | R , | r 0 ( ω ) | | L , .

Metrics